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PREPARATION OF 7XXX ALUMINUM wiping ) the as - received 7xxx aluminum alloy product ( 100 ) 
ALLOYS FOR ADHESIVE BONDING with a proper solvent ( e.g. , an organic solvent , such as 

acetone or hexane ) . This cleaning step ( 412 ) facilitates 
CROSS - REFERENCE TO RELATED removal of debris ( e.g. , lubricant ( s ) , oil ( s ) , dirt ) , and other 

APPLICATIONS 5 items on the surface of the as - received 7xxx aluminum alloy 
product that might disrupt the subsequent ablating step 

This application is a continuation of International Patent ( 304 ) . 
Application No. PCT / US2018 / 039789 , filed Jun . 27 , 2018 , The preparing step ( 410 ) may also include a positioning 
which claims priority to U.S. Patent Application No. 62/526 , step ( 418 ) . The positioning step ( 418 ) may include position 
247 , filed Jun . 28 , 2017 , each of which is incorporated herein 10 ing the energy source ( e.g. , the laser ( 116 ) ) above the surface 
by reference in its entirety . oxide layer ( 102 ) of the as - received 7xxx aluminum alloy 

product ( 100 ) for the subsequent ablating step ( 304 ) . In one 
BACKGROUND embodiment , the laser ( 116 ) may include mounting hard 

ware for fitting of the optics of the laser ( 116 ) to robotic 
7xxx aluminum alloys are aluminum alloys having zinc 15 equipment ( 218 ) for process automation purposes . In this 

and magnesium as their primary alloying ingredients , embodiment , the positioning step ( 418 ) may also include 
besides aluminum . It would be useful to facilitate adhesive positioning the laser ( 116 ) above the surface oxide layer 
bonding of 7xxx aluminum alloys to itself and other mate- ( 102 ) using the robot equipment ( 218 ) . In another embodi 
rials ( e.g. , for automotive applications ) . ment , the positioning step ( 418 ) may further include posi 

20 tioning the as - received 7xxx aluminum alloy product ( 100 ) 
SUMMARY beneath the energy source ( e.g. , the laser ( 116 ) ) either 

instead of , or in addition to , positioning the energy source 
Broadly , the present disclosure relates to methods of above the surface oxide layer ( 102 ) . For example , and 

preparing magnesium - containing aluminum alloys ( e.g. , without limitation , methods ( 300 ) , ( 400 ) and ( 500 ) may be 
having 0.2-6 wt . % Mg ) for adhesive bonding , and products 25 performed , at least in part , as an automated process by which 
made by such methods . To illustrate the inventive aspects of the as - received 7xxx aluminum alloy product ( 100 ) ( e.g. , a 
the present method , 7xxx aluminum alloys ( e.g. , AlZnMg or sheet product ) proceeds continuously through the receiving 
AlZnMgCu alloys ) are generally used below . However , any ( 302 ) and ablating ( 304 ) steps and any intervening steps . 
suitable magnesium - containing aluminum alloy may be In one embodiment , the ablating step ( 302 ) may also 
employed with the present method . 30 include directing ( 504 ) a pulsed laser beam ( 208 ) of , for 

In one approach , and referring now to FIGS . 1-5 , a example , a Q - switched , diode - pumped , solid - state ( e.g. , 
method ( 300 ) may comprise receiving ( 302 ) a 7xxx alumi- Nd : YAG ) laser ( 116 ) . In one embodiment , the pulsed laser 
num alloy product ( 100 ) having a 7xxx aluminum alloy ( 116 ) may operate an average power of 300 W and the 
matrix ( 106 ) with a surface oxide layer ( 102 ) thereon . The pulsed laser ( 116 ) may be capable of directing ( 504 ) at the 
surface oxide layer ( 102 ) may include an aluminum oxide 35 surface oxide layer ( 102 ) laser beam ( 208 ) pulses of up to 50 
( e.g. , A10 ) sublayer ( 108 ) and a magnesium oxide ( e.g. , mm wide , up to 0.89 mm in diameter , from a 6-10 inch focal 
MgO ) sublayer ( 110 ) . The as - received surface oxide layer distance , and with a maximum power of 230 kW per pulse 
( 102 ) generally has an as - received thickness ( 104 ) , generally ( e.g. , at a focal point proximal the surface oxide layer ( 102 ) ) . 
from 5 nm to 60 nm thick , depending on temper . Products Other lasers and / or laser parameters may be used . One or 
shipped in the W - temper or T - temper may have a thicker 40 more pulsed laser ( 116 ) types may be tuned ( e.g. , during the 
as - received thickness ( e.g. , from about 20 to 60 nm ) , controlling step ( 530 ) ) to achieve the desired effect during a 
whereas F - temper products may have a thinner as - received directing step ( 504 ) , as described below . In one embodiment , 
oxide thickness ( e.g. , from about 5 to 20 nm ) . While the the pulsed laser ( 116 ) may direct ( 504 ) at the surface oxide 
as - received surface oxide layer ( 102 ) is illustrated as being layer ( 102 ) laser beam ( 208 ) pulses at a pulse frequency of 
generally uniform , the as - received surface oxide layer gen- 45 from 15-40 kHz , corresponding to a period of from 25 to 67 
erally has a non - uniform topography . The as - received alu- is . In another embodiment , the pulsed laser ( 116 ) may direct 
minum alloy product ( 100 ) may include intermetallic par- ( 504 ) at the surface oxide layer ( 102 ) laser beam ( 208 ) 
ticles ( 114 ) ( e.g. , second phase particles ) at least proximal pulses at a pulse frequency of 25 kHz , corresponding to a 
the surface oxide layer ( 102 ) ( only one intermetallic particle period of 40 is . In one embodiment , the pulsed laser ( 116 ) 
is shown in FIG . 1 ) . The intermetallic particles ( 114 ) may 50 may direct ( 504 ) at the surface oxide layer ( 102 ) laser beam 
include Cu - bearing intermetallic particles , for instance . A ( 208 ) pulses at a pulse duration of from 80 to 200 ns . 
mixed oxide layer ( 112 ) overlies at least some of the The ablating step ( 304 ) may further include directing 
intermetallic particles ( 114 ) and may include a mixture of ( 504 ) the energy source ( e.g. , the laser ( 116 ) ) at the surface 
magnesium oxides and aluminum oxides . oxide layer ( 102 ) to volatilize ( 502 ) at least some of the 

After receipt ( 302 ) , at least some of the intermetallic 55 intermetallic particles ( 114 ) into a vapor ( 206 ) , thereby 
particles ( 114 ) are ablated ( 304 ) , resulting in an ablated 7xxx creating a displaced / ruptured mixed oxide layer ( 212 ) and a 
aluminum alloy product ( 200 ) having an ablated portion plurality of ablation voids ( 214 ) ( e.g. , ablation pits ) proxi 
( 202 ) surrounded by an unablated portion ( 216 ) . The ablat- mal the surface oxide layer ( 102 ) . The directing step ( 504 ) 
ing step ( 304 ) may be controlled ( 530 ) so that there is an may also include volatilizing ( 502 ) the intermetallic par 
absence of melting of the matrix ( 106 ) . The ablating step 60 ticles ( 114 ) by controlling ( 530 ) the energy source's radia 
( 304 ) may also include directing ( 504 ) an energy source at tion conditions . The controlling step ( 530 ) may further 
the surface oxide layer ( 102 ) , thereby ablating ( 304 ) at least include determining and controlling operational parameters 
some of the intermetallic particles ( 114 ) ( e.g. , by controlling and / or settings of the laser ( 116 ) to achieve the desired 
( 530 ) the energy source’s radiation conditions ) . volatilizing ( 502 ) of the intermetallic particles ( 114 ) by 

In one embodiment , the receiving step ( 302 ) may also 65 inducing , for example , the requisite heating conditions ( e.g. , 
include a preparing step ( 410 ) . The preparing step ( 410 ) may temperatures and / or heating rates ) of the intermetallic par 
include a cleaning step ( 412 ) including contacting ( e.g. , ticles ( 114 ) proximal the surface oxide layer ( 102 ) . These 
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operational settings and / or parameters of the laser ( 116 ) may the aluminum oxide sublayer ( 108 ) . The ablating step ( 304 ) 
include at least one of scan speed ( e.g. , feet per second ) , may also include maintaining ( 508 ) the surface oxide layer 
pulse frequency , pulse duration , average power , peak pulse ( 102 ) at the as - received thickness ( 104 ) . In one embodiment , 
power , beam width , beam diameter , hatch spacing ( distance the ablating step ( 304 ) may result in an ablated thickness 
between scans ) and focal distance to the surface oxide layer 5 ( 204 ) of the surface oxide layer ( 102 ) remaining , at least on 
( 102 ) . average , substantially equal to the as - received thickness 

In one embodiment , the directing step ( 504 ) and / or the ( 104 ) . In another embodiment , the ablating step ( 304 ) may volatilizing step ( 502 ) may include partially ablating ( 304 ) result in the ablated thickness ( 204 ) of the surface oxide and / or partially volatilizing ( 502 ) the mass of one or more of layer ( 102 ) being decreased as compared to the as - received the intermetallic particles ( 114 ) ( e.g. , in the case of inter- 10 thickness ( 104 ) . In one embodiment , the ablated thickness metallic particles ( 114 ) having size ( s ) that are considerably ( 204 ) of the surface oxide layer ( 102 ) is from about 5 to 60 larger than other intermetallic particles ( 114 ) ) of the as nm . In another embodiment , the ablated thickness ( 204 ) of received 7xxx aluminum alloy product ( 100 ) . In another 
embodiment , the directing step ( 504 ) and / or the volatilizing the surface oxide layer ( 102 ) is from about 20 to 60 nm ( e.g. , 
step ( 502 ) may include fully ablating ( 304 ) and / or fully 15 an ablated 7xxx aluminum alloy product ( 200 ) in the W- , F 
volatilizing ( 502 ) the entirety of the mass of one or more of or T - temper ) . In yet another embodiment , the ablated thick 
the intermetallic particles ( 114 ) . In yet another embodiment , ness ( 204 ) of the surface oxide layer ( 102 ) is from about 5 
the directing step ( 504 ) and / or the volatilizing step ( 502 ) to 20 nm ( e.g. , an ablated 7xxx aluminum alloy product 
may include fully ablating ( 304 ) and / or fully volatilizing ( 200 ) in the F - temper ) . In another embodiment , the ablated 
( 502 ) the mass of all intermetallic particles ( 114 ) subject to 20 thickness ( 204 ) of the surface oxide layer ( 102 ) is < 200 nm . 
energy absorption from the energy source ( e.g. , laser ( 116 ) ) . The ablating step ( 304 ) may also include preserving ( 528 ) 
The directing step ( 504 ) and / or the volatilizing step ( 502 ) an overall composition / concentration of at least one of the 
may also include displacing / rupturing ( 506 ) at least a por- constituent elements of the surface oxide layer ( 102 ) at an 
tion the mixed oxide layer ( 112 ) overlying of at least some as - received elemental composition . The preserving step 
of the intermetallic particles ( 114 ) , thereby exposing the 25 ( 528 ) may include preserving ( 528 ) an Mg composition of 
ablation voids ( 214 ) to an exterior ( 220 ) of the ablated 7xxx the surface oxide layer ( 102 ) at an as - received Mg compo 
aluminum alloy product ( 200 ) . sition ( e.g. , of the magnesium oxide sublayer ( 110 ) ) . In one 

The ablating step ( 304 ) may further include a removing embodiment , the ablating step ( 304 ) may result in an ablated 
step ( 522 ) . The removing step ( 522 ) may include transport- Mg composition of the surface oxide layer ( 102 ) being 
ing the vapor ( 206 ) , particulate matter , debris , and / or other 30 preserved ( 528 ) , at least on average , substantially equal to 
by - products of the ablating step ( 304 ) distal the ablated the as - received Mg composition of the surface oxide layer 
( 202 ) and / or unablated ( 216 ) portions of the ablated 7xxx ( 102 ) . In another embodiment , the ablated Mg composition 
aluminum alloy product ( 200 ) . These by - products may arise of the surface oxide layer ( 102 ) is preserved ( 528 ) a value 
as a result of effects of the laser ( 116 ) treatment on the close to that of the as - received 7xxx aluminum alloy product 
surface oxide layer ( 102 ) , the intermetallic particles ( 114 ) 35 ( 100 ) ( e.g. , typically in a range of from 20 to 45 atomic % 
and / or the mixed oxide layer ( 112 ) . In one embodiment , the Mg ) . 
removing step ( 522 ) may include a vacuuming step ( 524 ) . In one embodiment , the ablated Mg composition of the 
The vacuuming step ( 524 ) may include vacuuming up the surface oxide layer ( 102 ) is preserved ( 528 ) at > 10 atomic % 
by - products of the ablating step ( 304 ) using a vacuum pump Mg . In another embodiment , the ablated Mg composition of 
( 222 ) positioned proximal the laser ( 116 ) , for instance . 40 the surface oxide layer ( 102 ) the ablated Mg composition of 

In another embodiment , the removing step ( 522 ) may the surface oxide layer ( 102 ) is preserved ( 528 ) at > 12 
include a blowing step ( 526 ) . The blowing step ( 526 ) may atomic % Mg . In yet another embodiment , the ablated Mg 
include positioning a blower ( 224 ) , for example , proximal composition of the surface oxide layer ( 102 ) is preserved 
the laser ( 116 ) to blow ( 526 ) air , nitrogen or another gas ( 528 ) at > 14 atomic % Mg . In another embodiment , the 
toward the ablated ( 202 ) and / or unablated ( 216 ) portions to 45 ablated Mg composition of the surface oxide layer ( 102 ) is 
facilitate transporting the by - products of the ablating step preserved ( 528 ) at > 16 atomic % Mg . In yet another embodi 
( 304 ) distal the ablated ( 202 ) and / or unablated ( 216 ) por- ment , the ablated Mg composition of the surface oxide layer 
tions of the ablated 7xxx aluminum alloy product ( 200 ) . For ( 102 ) is preserved ( 528 ) at > 18 atomic % Mg . In another 
the removing step ( 522 ) , the blowing step ( 526 ) may be embodiment , the ablated Mg composition of the surface 
performed either instead of , or in addition to , the vacuuming 50 oxide layer ( 102 ) is preserved ( 528 ) at > 20 atomic % Mg . 
step ( 524 ) . The ablating step ( 304 ) may further include ablating ( 204 ) 

In one embodiment , the removing step ( 522 ) may be at least some of the intermetallic particles ( 114 ) in the 
performed contemporaneously with the directing step ( 504 ) . absence of melting of the matrix ( 106 ) of the ablated 7xxx 
In another embodiment , the removing step ( 522 ) may be aluminum alloy product ( 200 ) . In one embodiment , an 
performed after the directing step ( 504 ) , either instead of , or 55 interface ( 118 ) may be present between the matrix ( 106 ) and 
in addition to being performed contemporaneously with the the surface oxide layer ( 102 ) . The matrix ( 206 ) may be an 
directing step ( 504 ) . In yet another embodiment , the remov- aluminum alloy metal proximal the interface ( 118 ) , and may 
ing step ( 522 ) may be performed by rinsing the ablated 7xxx also be generally more reflective to the radiation of the 
aluminum alloy product ( 200 ) with water ( e.g. , deionized energy source ( e.g. , laser beam ( 206 ) of the laser ( 116 ) ) as 
water ) and / or other suitable cleaning / rinsing agents , either 60 compared to the intermetallic particles ( 114 ) . The interme 
instead of , or in addition to , performing the vacuuming ( 524 ) tallic particles ( 114 ) , by contrast , may be less reflective to 
and / or blowing ( 526 ) steps . the radiation of the energy source , and thus may absorb more 

In one embodiment , the surface oxide layer ( 102 ) of the energy from the radiation ( e.g. , laser beam ( 206 ) of the laser 
as - received 7xxx aluminum alloy product may include the ( 116 ) ) as compared to the interface ( 118 ) . The surface oxide 
aluminum oxide sublayer ( 108 ) overlying the matrix ( 106 ) . 65 layer ( 102 ) may be more transparent to the energy source 
In another embodiment , the surface oxide layer ( 102 ) may radiation as compared to the intermetallic particles ( 114 ) and 
also include the magnesium oxide sublayer ( 110 ) overlying the matrix ( 106 ) . 
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The ablating step ( 304 ) may also include selectively product ( 100 ) . For example , and without limitation , the 
ablating ( 534 ) at least some of the intermetallic particles determined average number of intermetallic particles ( 114 ) 
( 114 ) . The selectively ablating step ( 534 ) may exploit a per unit area may inform the selection of the one or more 
determination ( 432 ) of differing properties , elemental com- values of the operational parameters and / or settings of the 
positions and / or physical / chemical behaviors ( e.g. , relative 5 laser ( 116 ) and / or robotic equipment ( 420 ) to be used 
thermal conductivities , relative thermal expansion , achiev- throughout the automated and / or mass production manufac 
able peak temperatures , induced heating rates and / or subse- turing process . 
quent cooling rates during and / or after exposure to the In one embodiment , the intermetallic particles ( 114 ) may 
radiation of the energy source ) of the surface oxide layer define pre - ablation volumes in the as - received 7xxx alumi 
( 102 ) , the intermetallic particles ( 114 ) , and the matrix ( 206 ) 10 num alloy product ( 100 ) . The ablating step ( 304 ) may 
proximal the interface ( 118 ) . In one embodiment , the deter- further include creating at least some of the plurality of 
mining step ( 432 ) may be performed prior to the receiving ablation voids or ablation pits ( 214 ) having ablation void 
( 302 ) and ablating ( 304 ) steps . In another embodiment , the volumes that are greater than the pre - ablation volumes of the 
determining step ( 432 ) may be performed after the receiving intermetallic particles ( 114 ) . In one embodiment , the ratio of 
step ( 302 ) and before the ablating step ( 304 ) . The determin- 15 the ablation void volume to the pre - ablation intermetallic 
ing ( 432 ) and / or the controlling ( 530 ) steps may thereby particle volume is > 1 : 1 . In another embodiment , the ratio of 
facilitate selectively ablating ( 534 ) at least some of the the ablation void volume to the pre - ablation volume is > 2 : 1 . 
intermetallic particles ( 114 ) and in the absence of melting of In yet another embodiment , the ratio of the ablation void 
the matrix ( 206 ) . volume to the pre - ablation volume is > 3 : 1 . In another 
The ablating step ( 304 ) may further include selectively 20 embodiment , the ratio of the ablation void volume to the 

ablating ( 534 ) at least some of the intermetallic particles pre - ablation volume is > 4 : 1 . In yet another embodiment , the 
( 114 ) in the absence of inducing alterations , at least on ratio of the ablation void volume to the pre - ablation volume 
average , in a surface grain structure of the matrix ( 106 ) ( e.g. , is > 5 : 1 . In another embodiment , the ratio of the ablation void 
the unablated portion ( 216 ) ) of the ablated ( 200 ) versus the volume to the pre - ablation volume is > 6 : 1 . In yet another 
as - received ( 100 ) 7xxx aluminum alloy product . The deter- 25 embodiment , the ratio of the ablation void volume to the 
mining ( 432 ) and / or the controlling ( 530 ) steps may also pre - ablation volume is > 7 : 1 . In another embodiment , the 
thereby facilitate selectively ablating ( 534 ) at least some of ratio of the ablation void volume to the pre - ablation volume 
the intermetallic particles ( 114 ) and in the absence of is > 8 : 1 . In yet another embodiment , the ratio of the ablation 
inducing appreciable alterations in the overall grain structure void volume to the pre - ablation volume is > 9 : 1 . In still 
of the unablated portion ( 216 ) . 30 another embodiment , the ratio of the ablation void volume 

The ablating step ( 304 ) may further include selectively to the pre - ablation volume is > 10 : 1 . 
ablating ( 534 ) at least some of the intermetallic particles As noted above , the ablation of copper - bearing interme 
( 114 ) in the absence of inducing changes , at least on average , tallic particles may facilitate production of 7xxx aluminum 
in an overall roughness of the surface ( e.g. , the unablated alloy products capable of successfully passing appropriate 
portion ( 216 ) ) of the ablated ( 200 ) versus the as - received 35 adhesive bonding tests . While not being bound by any 
( 100 ) 7xxx aluminum alloy product . The determining ( 432 ) particular theory , it is believed that laser ablation of near 
and / or the controlling ( 530 ) steps may also thereby facilitate surface , or at - surface , copper - bearing intermetallic particles 
selectively ablating ( 534 ) at least some of the intermetallic removes such particles without allowing the copper con 
particles ( 114 ) and in the absence of inducing appreciable tained therein to redeposit ( e.g. , by electroplating ) onto the 
changes in the overall roughness of the unablated portion 40 aluminum alloy surface . Prior chemical etch methods may 
( 216 ) . remove copper - bearing intermetallic particles ( e.g. , by dis 
The method ( 500 ) may also include locating ( 536 ) the solving them ) , but copper ions may remain in solution with 

intermetallic particles ( 114 ) prior to selectively ablating such chemical etch methods , thereby allowing the copper to 
( 534 ) them . In one embodiment , the locating ( 536 ) step may redeposit on the aluminum alloy surface ( e.g. , by electro 
include determining the locations of the intermetallic par- 45 plating ) , causing copper enrichment . Copper enrichment 
ticles ( 114 ) proximal the interface ( 118 ) of the as - received with chemical etching may be due to the preferential oxi 
7xxx aluminum alloy product ( 100 ) . In one embodiment , dation / dissolution during chemical etching . Chemical etch 
one or more analytical techniques may be employed on ing may also lead to formation of copper particles at or near 
sample ( s ) of the as - received 7xxx aluminum alloy product the surface and these copper particles may be detrimental to 
( 100 ) to determine , for example , an average distribution of 50 later functionalization processes . With the new method 
intermetallic particles ( 114 ) proximal the interface ( 118 ) . disclosed herein the intermetallic particles are volatized , 
For instance , an average number of intermetallic particles generally preventing re - deposition of the copper ( e.g. , by 
( 114 ) per unit area of the surface ( s ) of the as - received 7xxx plating / electroplating ) . Accordingly , the plurality of ablation 
aluminum alloy product ( 100 ) to be selectively ablated ( 534 ) voids ( e.g. , ablation pits ) created by the new methods 
may be determined using the one or more analytical tech- 55 disclosed herein may leave such ablation voids generally 
niques . Such determinations may then be used in the con- free of copper . The absence of copper in these ablation voids 
trolling step ( 530 ) by , for example , informing the selection may facilitate creation of functionalization layers and with 
of values of the operational parameters and / or settings of the out the need to remove the surface oxide layer of the 7xxx 
laser ( 116 ) and / or robotic equipment ( 420 ) ( e.g. , scan aluminum alloy product . The absence of copper particles at 
speeds , focal point loci for the directing step ( 504 ) , beam 60 the surface may also facilitate creation of functionalization 
diameter , beam width , etc. ) to facilitate selectively ablating layers and without the need to remove the surface oxide 
( 534 ) the located intermetallic particles ( 114 ) . Analytical layer of the 7xxx aluminum alloy product . 
determinations such as an average number of intermetallic The new 7xxx aluminum alloy products described herein 
particles ( 114 ) per unit area of sample ( s ) of the as - received may have one or more portions having a high ablation pit 
7xxx aluminum alloy product ( 100 ) may be applied to 65 density ( e.g. , at least 100 ablation pits / mm² ) . The portions 
respective values selected for the controlling step ( 530 ) for having the high ablation pit density are generally those that 
a plurality of units of as - received 7xxx aluminum alloy have been exposed to an energy source ( e.g. , a laser ) . The 
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portions that have not been exposed to an energy source ( i.e. , with the ablated 7xxx aluminum alloy product ( 200 ) . In one 
unablated ) may realize a low ablation pit density ( e.g. , less embodiment , determining ( 602 ) the at least one bonding 
than 100 ablation pits / mm² ) . In one embodiment , a 7xxx location may be performed before the receiving step ( 302 ) 
aluminum alloy product comprises at least 100 ablation pits and before the ablating step ( 304 ) . In another embodiment , 
per square mm of ablated surface of the 7xxx aluminum 5 the determining ( 602 ) step may be performed after the 
alloy product . In another embodiment , a 7xxx aluminum receiving step ( 302 ) . The ablating step ( 304 ) may also 
alloy product comprises at least 300 ablation pits per square include completing ( 604 ) the ablating step ( 304 ) relative to 
mm of ablated surface of the 7xxx aluminum alloy product . the at least one bonding location , thereby creating the 
In yet another embodiment , a 7xxx aluminum alloy product ablated portion ( 202 ) . In one embodiment , the pre - deter 
comprises at least 600 ablation pits per square mm of ablated 10 mined bonding location ( s ) may correspond to pre - selected 
surface of the 7xxx aluminum alloy product . In another portion ( s ) ( e.g. , portion ( s ) to be subsequently bonded to 
embodiment , a 7xxx aluminum alloy product comprises at another material ) of the as - received 7xxx aluminum alloy 
least 900 ablation pits per square mm of ablated surface of product ( 100 ) to be ablated ( 304 ) during the ablating step 
the 7xxx aluminum alloy product . In yet another embodi- ( 304 ) . In another embodiment , only those portion ( s ) of the 
ment , a 7xxx aluminum alloy product comprises at least 15 7xxx aluminum alloy product ( 100 and / or 200 ) that are 
1200 ablation pits per square mm of ablated surface of the pre - selected to be adhesively bonded are ablated during the 
7xxx aluminum alloy product . In another embodiment , a ablating step ( 304 ) . An appropriate optical system may be 
7xxx aluminum alloy product comprises at least 1500 abla- used to facilitate locating the pre - determined location ( s ) for 
tion pits per square mm of ablated surface of the 7xxx the subsequent adhesive bonding . 
aluminum alloy product . In yet another embodiment , a 7xxx 20 Referring now to FIGS . 14a - 14b , a schematic , top - down 
aluminum alloy product comprises at least 1800 ablation pits view of the outer surface of a 7xxx aluminum alloy product 
per square mm of ablated surface of the 7xxx aluminum is shown ( 1400 ) . The outer surface ( 1400 ) comprises a 
alloy product . In another embodiment , a 7xxx aluminum plurality of first zones ( 1410a , 14106 , 1410c , and 1410d ) 
alloy product comprises at least 2000 ablation pits per and a second zone ( 1420 ) . As depicted , the second zone 
square mm of ablated surface of the 7xxx aluminum alloy 25 ( 1420 ) has not been ablated , and is therefore absent of 
product . In one embodiment , the ablated surface is the outer ablation pits . Conversely , the first zones ( 1410a , 14106 , 
surface ( i.e. , the whole surface is ablated ) . In another 1410c , 1410d ) have been ablated ( e.g. , exposure to an 
embodiment , the ablated surface is one or more ablated energy source ) , and therefore comprise a plurality of abla 
zones ( e.g. , portion ( s ) of a surface ) . tion pits . In this regard , FIG . 14b shows a close - up view of 

The intermetallic particles ( 114 ) of the as - received 7xxx 30 a portion ( 1430 ) of first zone 1410b and a portion ( 1440 ) of 
aluminum alloy product ( 100 ) may include constituent par- the second zone ( 1420 ) . As shown , the portion ( 1430 ) of the 
ticles and / or dispersoids , for instance . Intermetallic particles first zone ( 1410b ) comprises a plurality of ablation pits 
are generally at least 200 nanometers in size on average . ( 1432 ) . The illustrated portion ( 1430 ) of first zone 1410b is 
Intermetallic particles may be positioned proximal the inter- adjacent to the portion ( 1440 ) of the second zone ( 1420 ) . 
face ( 118 ) of the as - received 7xxx aluminum alloy product 35 The plurality of first zones may be located in any suitable 
( 100 ) . The as - received 7xxx aluminum alloy product ( 100 ) location , and may be of any suitable size and / or shape . As 
may include other intermetallic particles ( 114 ) in addition to such , the plurality of first zones may be arranged in any 
or in lieu of Cu - bearing intermetallic particles , such as suitable configuration relative to one another , and relative to 
Fe - bearing , Si - bearing , and / or Mg - bearing intermetallic par- the second zone ( s ) . For instance , the plurality of first zones 
ticles . The intermetallic particles may include , for example 40 may be located in any suitable location , such as on one or 
and without limitation , Al , Cu , Fe , Al , CuMg , and Al , 2 ( Fe , more of an upper surface , a lower surface , one more edges , 
Mn ) 3 Si constituted particles . At least some of the interme- and / or one or more corners . A first zone may also be 
tallic particles ( 114 ) ( e.g. , those containing copper ) may contiguous across one or more surfaces of a 7xxx aluminum 
cause undesirable corrosion and / or adhesive bonding issues . alloy product . For instance , a first zone may comprise a first 
The ablating step ( 304 ) may thus also include increasing a 45 portion located on an upper surface , a second portion located 
corrosion resistance ( e.g. , improving a corrosion perfor- on an edge , and a third portion located on the lower surface , 
mance ) of the ablated 7xxx aluminum alloy product ( 200 ) . where the first , second , and third portions are contiguous 
The ablating step ( 304 ) may thus include increasing an with each other ( i.e. , they are not separated by the second 
adhesive bonding performance of the ablated 7xxx alumi- zone ) . Thus , the plurality of first zones may be tailored 
num alloy product ( 200 ) , as further described below . In one 50 according to the needs of the final product . For instance , the 
embodiment , the ablating ( 304 ) comprises ablating at least plurality of first zones may be associated with one or more 
some of the constituent particles , but not the strengthening pre - determined bonding locations . 
phases . Such strengthening phases are usually less than 200 The plurality of first zones may realize a depth generally 
nm in size , and often less than 100 nm in size ( e.g. , around not greater than 10 micrometers . In one embodiment , one or 
50 nm in size , on average ) , depending on temper . In this 55 more first zones realize a depth of not greater than 7 
regard , a 7xxx series aluminum alloy may include strength- micrometers . In another embodiment , one or more first 
ening phases such as Mg Si and Mg , Zn precipitates , among zones realize a depth not greater than 5 micrometers . In yet 
others . A 7xxx series aluminum alloy may include constitu- another embodiment , one or more first zones realize a depth 
ent particles such as , Al , Cu , Fe , Al , CuMg , and All2 ( Fe , Mn ) of not greater than 4 micrometers . The ablation pits may 
3Si , among others . Thus , for 7xxx series aluminum alloys , in 60 realize a depth that is not greater than the depth of the 
one embodiment the ablating ( 304 ) may comprise ablating ablated zones . Thus , in one embodiment , a plurality of 
one or more of Al , Cu Fe constituent particles , Al_CuMg ablation pits realize an average depth that is not greater than 
constituent particles , and All2 ( Fe , Mn ) 3Si constituent par- the depth of one or more first zones . 
ticles , but not ablating at least one of Mg2Si precipitates and Referring now to FIG . 15 , a schematic , side - view of a 
Mg2Zn precipitates . 65 7xxx aluminum alloy product ( 100 ) is shown . The 7xxx 

Referring now to FIG . 6 , a method ( 600 ) may include aluminum alloy product ( 100 ) comprises an upper surface 
determining ( 602 ) at least one bonding location associated oxide layer ( 102 ) , as described above , and a lower surface 
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oxide layer ( 103 ) . The lower surface oxide layer ( 103 ) is portion of the ablated 7xxx aluminum alloy product ( 200 ) . 
generally the same as the upper surface layer ( 102 ) prior to The pretreated portion is then rinsed with water after the acid 
ablation . As depicted , the 7xxx aluminum alloy product application step . 
( 100 ) comprises an upper surface ( 150 ) and a lower surface The contacting step ( 606 ) may also include selectively 
( 151 ) . The upper surface ( 150 ) is associated with the upper 5 contacting ( 608 ) the ablated portion ( 202 ) with the phos 
surface oxide layer ( 102 ) , and the lower surface ( 151 ) is phorus - containing organic acid to create the pretreated por 
associated with the lower surface oxide layer ( 103 ) . As tion ( s ) of the ablated 7xxx aluminum alloy product ( 200 ) . 
depicted , the upper surface oxide layer ( 102 ) is disposed on The selectively contacting step ( 608 ) may include a restrict 
top of the aluminum alloy matrix ( 106 ) , and the lower ing step ( 610 ) . The restricting step ( 610 ) may include 
surface oxide layer ( 103 ) is disposed on the bottom of the 10 restricting contact between the unablated portion ( 216 ) and 
aluminum alloy matrix ( 106 ) . Thus , the aluminum alloy the phosphorus - containing organic acid . In one embodi 

ment , the restricting step ( 610 ) may include masking the matrix ( 106 ) is disposed between the upper surface ( 150 ) unablated portion ( 216 ) to prevent contact between the and lower surface ( 151 ) and their respective surface oxide phosphorus - containing acid and the unablated portion ( 216 ) . 
layers ( 102 , 103 ) . The surface oxide layers ( 102 , 103 ) may 15 În another embodiment , the restricting step ( 610 ) may 
have the features of the surface oxide as described in relation include applying the phosphorus - containing organic acid as 
to FIGS . 1-2 above ( e.g. , MgO layer ( 110 ) , A10 layer ( 108 ) , a gel formulation to facilitate contact only to the ablated 
intermetallic particles ( 114 ) ) . At least a portion of one or portion ( 202 ) . 
both of the surface oxide layers ( 102 , 103 ) may be ablated . The term “ organophosphonic acid ” includes acids having 
For instance , a portion of the upper surface ( 150 ) may be 20 the formula Rm [ PO ( OH ) 2 ] , wherein R is an organic group 
ablated while the lower surface ( 151 ) is unablated . Without containing 1-30 carbon atoms , m is the number of organic 
receiving an ablation treatment , the surface may be absent of groups and is about 1-10 , and n is the number of phosphonic 
ablation pits . Thus , in one embodiment , the lower surface acid groups and is about 1-10 . Some suitable organophos 
( 151 ) is absent of ablation pits . Furthermore , the upper phonic acids include vinyl phosphonic acid , methylphos 
surface ( 150 ) and / or lower surface ( 151 ) may comprise one 25 phonic acid , ethylphosphonic acid , octylphosphonic acid 
or more ablated zones . Alternatively , the entire surface ( 150 and styrenephosphonic acid . 
or 151 ) is ablated ( i.e. , the whole surface is ablated ) . The term “ organophosphinic acid ” includes acids having 
I. Creating the Functional Layer the formula R „ R ' [ PO ( OH ) ] , wherein R is an organic group 
A functional layer may be created on the ablated 7xxx containing 1-30 carbon atoms , R ' is hydrogen or an organic 

aluminum alloy product ( 200 ) after the ablating step ( 304 ) . 30 group containing 1-30 carbon atoms , m is the number of R 
Prior to creating the functional layer , the ablated 7xxx groups and is about 1-10 , n is the number of phosphinic acid 

groups and is about 1-10 , and o is the number of R ' groups aluminum alloy product ( 200 ) may be further prepared , such and is about 1-10 . Some suitable organophosphinic acids as by rinsing the ablated 7xxx aluminum alloy product include phenylphosphinic acid and bis- ( perfluoroheptyl ) ( 200 ) . This rinse may include rinsing with water ( e.g. , 35 phosphinic acid . 
deionized water ) so as to remove debris and / or residual In one embodiment , a vinyl phosphonic acid surface chemical . In one embodiment , a rinsing step results in treatment is used that forms essentially a monolayer with growth of additional aluminum oxides on the surface of the aluminum oxide in the surface layer . The coating area 
ablated 7xxx aluminum alloy product ( 200 ) , which may weight may be less than about 15 mg / m² . In one embodi 
nominally increase the thickness of the prepared surface 40 ment , the coating area weight is only about 3 mg / m² . 
oxide layer . An advantage of these phosphorus - containing organic 

To create a functionalized layer , the ablated 7xxx alumi- acids is that the pretreatment solution contains less than 
num alloy product ( 200 ) is generally exposed to an appro- about 1 wt . % chromium and preferably essentially no 
priate chemical , such as an acid or base . Thus , method ( 600 ) chromium . Accordingly , environmental concerns associated 
may also include a contacting step ( 606 ) . The contacting 45 with chromate conversion coatings are eliminated . 
step ( 606 ) may include contacting the ablated 7xxx alumi- In another embodiment , a functionalization layer is pro 
num alloy product ( 200 ) with a phosphorous - containing duced via a TiZr conversion coating , wherein , after the laser 
organic acid . In one embodiment , the contacting step ( 606 ) ablation ( and without the need for pickling / oxide removal ) , 
may include contacting the prepared 7xxx aluminum alloy applicable portion ( s ) of the aluminum alloy product are 
product with any of the phosphorus - containing organic acids 50 exposed to one or more solutions comprises titanium and 
disclosed in U.S. Pat . No. 6,167,609 to Marinelli et al . , zirconium . In one embodiment , no oxide removal step is 
which is incorporated herein by reference in its entirety . A required , e.g. , the method is absent of a pickling step due to 
layer of polymeric adhesive may then be applied to the the laser ablation of the 7xxx aluminum alloy product . In 
functionalized layer ( e.g. , for joining to a metal support one embodiment , a solution comprising TiZr ( e.g. , a 
structure to form a vehicle assembly ) . The contacting step 55 hexafluoride solution ) is sprayed on one or more laser 
( 606 ) may include other chemical methods , such as those ablated surfaces of the 7xxx aluminum alloy product , 
using titanium with zirconium , to facilitate production of the thereby forming the functionalization layer . In another 
functionalized layer . embodiment , a laser ablated 7xxx aluminum alloy product is 

The phosphorus - containing organic acid generally inter- immersed in a solution comprising Tizr . One known TiZr 
acts with aluminum oxide in the surface oxide layer ( 102 ) to 60 solution is GARDOBOND® X4591 , produced by Chemet 
form the functionalized layer . The phosphorus - containing all ( 675 Central Avenue , New Providence , N.J. 07974 ) . 
organic acid may be an organophosphonic acid or an organo- The functionalized ablated 7xxx aluminum alloy product 
phosphinic acid . The organic acid is dissolved in water , ( 200 ) may then be cut in desired sizes and shapes and / or 
methanol , or other suitable organic solvent , to form a worked into a predetermined configuration . Castings , extru 
solution that is applied to the ablated 7xxx aluminum alloy 65 sions and plate may also require sizing , for example by 
product ( 200 ) by spraying , immersion , roll coating , or any machining , grinding or other milling process . Shaped assem 
combination thereof , thereby creating at least one pretreated blies made in accordance with the invention are suitable for 
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many components of vehicles , including automotive bodies , methodologies ” , as defined in ASTM F2792-12a entitled 
body - in - white components , doors , trunk decks and hood " Standard Terminology for Additively Manufacturing Tech 
lids . nologies ” . 

The functionalized 7xxx aluminum alloy products may be The temper and aluminum alloy definitions ( 2xxx , 5xxx , 
bonded to a metal support structure using a polymeric 5 6xxx , 7xxx , 8xxx ) provided herein are per ANSI H35.1 
adhesive . Thus , method ( 600 ) may further include selec ( 2009 ) . 
tively applying a bonding agent to the pretreated portion ( s ) a . 7xxx Aluminum Alloys 
of the ablated 7xxx aluminum alloy product ( 200 ) . Method The systems and methods disclosed herein may be appli 
( 600 ) may also thus include joining the pretreated portion ( s ) cable to 7xxx aluminum alloy products , such as those 
of the ablated 7xxx aluminum alloy product ( 200 ) to another 10 including copper resulting in the formation of copper - bear 
material via the bonding agent . ing intermetallic particles . In one approach , the 7xxx alu 

Methods ( 300 ) , ( 400 ) , ( 500 ) and / or ( 600 ) may be imple minum alloy product comprises 2-12 wt . % Zn , 1-3 wt . % 
Mg , and 1-3 wt . % Cu . In one embodiment , the 7xxx mented in a mass production process including , without aluminum alloy product is one of a 7009 , 7010 , 7012 , 7014 , limitation , automotive- and / or aerospace - related manufac 15 7016 , 7116 , 7032 , 7033 , 7034 , 7036 , 7136 , 7037 , 7040 , turing processes . In manufacturing automotive components , 7140 , 7042 , 7049 , 7149 , 7249 , 7349 , 7449 , 7050 , 7150 , for example , it is often necessary to join the functionalized 7055 , 7155 , 7255 , 7056 , 7060 , 7064 , 7065 , 7068 , 7168 , 

7xxx aluminum alloy material to an adjacent structural 7075 , 7175 , 7475 , 7178 , 7278 , 7081 , 7181 , 7085 , 7185 , 
member . Joining functionalized 7xxx aluminum alloy mate- 7090 , 7093 , 7095 , 7099 , or 7199 aluminum alloy , as defined 
rials may be accomplished in two steps . First , a polymeric 20 by the Aluminum Association Teal Sheets ( 2015 ) . In one 
adhesive layer may be applied to the functionalized 7xxx embodiment , the 7xxx aluminum alloy is 7075 , 7175 , or 
aluminum alloy product , after which it is pressed against or 7475. In one embodiment , the 7xxx aluminum alloy is 7055 , 
into another component ( e.g. , another functionalized 7xxx 7155 , or 7225. In one embodiment , the 7xxx aluminum alloy 
aluminum alloy product ; a steel product ; a 6xxx aluminum is 7065. In one embodiment , the 7xxx aluminum alloy is 
alloy product ; a 5xxx aluminum alloy product ; a carbon 25 7085 or 7185. In one embodiment , the 7xxx aluminum alloy 
reinforced composite ) . The polymeric adhesive may be an is 7050 or 7150. In one embodiment , the 7xxx aluminum 
epoxy , a polyurethane or an acrylic . alloy is 7040 or 7140. In one embodiment , the 7xxx alumi 

After the adhesive is applied , the components may be spot num alloy is 7081 or 7181. In one embodiment , the 7xxx 
welded together , e.g. , in a joint area of applied adhesive . aluminum alloy is 7178. Prior to ablation , a 7xxx aluminum 
Spot welding may increase peel strength of the assembly and 30 alloy product may be in any of an F - temper , a W - temper or a T - temper . Non - limiting examples of intermetallic particles may facilitate handling during the time interval before the that may be ablated in a 7xxx aluminum alloy product adhesive is completely cured . If desired , curing of the include constituent particles ( e.g. , insoluble phases formed adhesive may be accelerated by heating the assembly to an 
elevated temperature . The assembly may then be passed 35 Al , CuMg , Al2 ( Fe , Mn ) , Si and Al , ( Fe , Mn ) particles . Non during solidification ) , such as , for instance , Al , Cu Fe , . 
through a zinc phosphate bath , dried , electrocoated , and limiting examples of strengthening phases that may not be subsequently painted with an appropriate finish . ablated include Mg Si and Mg2Zn precipitates , among oth 
II . Aluminum Alloys ers , and dispersoids ( e.g. , particles formed during homog 
As noted above , while 7xxx aluminum alloy were used to enization ) of AlzZr , All2Mg2Cr , All2 ( Fe , Mn ) 3Si , and 

describe various inventive aspects of the invention , the 40 Al2 , Cu , Mnz . 
methods described herein may be used with any magnesium- b . 6xxx Aluminum Alloys 
containing aluminum alloy . Magnesium - containing alumi- The systems and methods disclosed herein may be appli 
num alloys are aluminum alloys having a sufficient amount cable to 6xxx aluminum alloy products . In one approach , the 
of magnesium such that the MgO layer described above may 6xxx aluminum alloy product comprises 0.2-2.0 wt . % Mg , 
be formed . As a non - limiting example , a magnesium - con- 45 0.2-1.5 wt . % Si , and up to 1.0 wt . % Cu . In one embodi 
taining aluminum alloy may contain from 0.2 to 6 wt . % Mg . ment , the 6xxx aluminum alloy product is one of a 6111 , 
In one embodiment , a magnesium - containing aluminum 6013 , 6022 , 6x61 6082 , 6014 , 6016 , or a 6063 aluminum 
alloy contains at least 0.5 wt . % Mg . Indeed , while the alloy product , among others . Prior to ablation a 6xxx alu 
disclosure has been described in relation to 7xxx aluminum minum alloy product may be in any of a F - temper , W - tem 
alloy products and ablation of their intermetallic particles , it 50 per , or T - temper . Non - limiting examples of intermetallic 
is anticipated that the ablation techniques described herein particles that may be ablated in a 6xxx aluminum alloy 
may also be applicable to other aluminum alloys having product include , for instance , Aliz ( Fe , Mn , Cr ) zSi and 
intermetallic particles available for ablation . Such other Al , Fe , Siz , among others . Non - limiting examples of 
aluminum alloys may include one or more of 2xxx , 5xxx , strengthening phases that may not be ablated include Mg Si 
6xxx , and 8xxx ( e.g. , 8xxx aluminum alloys containing high 55 and Q phase ( Al , Cu , Mg Sio ) precipitates , among others . 
amounts of iron or lithium ) . c . 5xxx Aluminum Alloys 
The magnesium - containing aluminum alloys aluminum The systems and methods disclosed herein may be appli 

alloy may be in any form , such as in the form of a wrought cable to 5xxx aluminum alloy products . In one approach , the 
product ( e.g. , a rolled sheet or plate product , an extrusion , a 5xxx aluminum alloy product comprises 0.5-6.0 wt . % Mg . 
forging ) . The magnesium - containing aluminum alloys alu- 60 In one embodiment , the 5xxx aluminum alloy product is one 
minum alloy product may alternatively be in the form of a of a 5754 , 5182 , 5052 , 5050 , 5083 , 5086 , 5154 , 5252 , 5254 , 
shape - cast product ( e.g. , a die casting ) . The magnesium- 5454 , 5456 , 5457 , 5652 , 5657 , 5349 , 5005 , or a 5022 
containing aluminum alloys aluminum alloy product may aluminum alloy product , among others . Prior to ablation a 
alternatively be an additively manufactured product . As used 5xxx aluminum alloy product may be in any of a O - temper 
herein , “ additive manufacturing " means “ a process of join- 65 or H - temper . Non - limiting examples of intermetallic par 
ing materials to make objects from 3D model data , usually ticles that may be ablated in a 5xxx aluminum alloy product 
layer upon layer , as opposed to subtractive manufacturing include , for instance , All2 ( Fe , Mn ) 3Si , among others . 
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d . 2xxx Aluminum Alloys FIGS . 12a and 12b are SEM images of cross sections of 
The systems and methods disclosed herein may be appli- the Example 1 alloy ( 250x magnification ) , prior to laser 

cable to 2xxx aluminum alloy products . In one approach , the treatment ( FIG . 12a ) and after laser treatment at 25 kHz 
6xxx aluminum alloy product comprises 0.5-7 wt . % Cu and ( FIG . 12b ) . 
0.2-2.0 wt . % Mg . In one embodiment , the 2xxx aluminum 5 FIGS . 13a and 13b are additional SEM images of cross 
alloy product is one of 2024 , 2014 , 2124 , 2090 , 2011 , or a sections , respectively , of the Example 1 alloy ( 2000x mag 
2219 aluminum alloy product , among others . Prior to abla nification ) , prior to laser treatment ( FIG . 13a ) and after laser 
tion a 2xxx aluminum alloy product may be in any of a treatment at 25 kHz ( FIG . 13b ) . 
F - temper , W - temper , or T - temper . Non - limiting examples of FIG . 14a is a schematic , top - down view of the outer 
intermetallic particles that may be ablated in a 2xxx alumi- 10 surface of a 7xxx aluminum alloy product . 
num alloy product include , for instance , Al , Cu , Fe , Al , Cu , FIG . 14b is a close - up view of a portion of a first zone 
Al_CuMg , Al 2 ( Fe , Mn ) 3Si Al ( Fe , Mn ) , and Al2.Cu Mnz , from FIG . 14a that comprises a plurality of ablation pits . 

FIG . 15 is a schematic , side - view of a 7xxx aluminum among others . Non - limiting examples of strengthening alloy product . phases that may not be ablated include Al , Cu , Al , CuMg , 
Al , CuLi , and AlzLi , among others . DETAILED DESCRIPTION 

a 

15 

BRIEF DESCRIPTION OF THE FIGURES Example 1 

20 

a 

FIG . 1 is a cross - sectional schematic view of an as A 7xxx aluminum alloy sheet product ( Al - Zn — Mg 
received aluminum alloy product just prior to laser treatment Cu type ) was produced and processed to a T76 temper ( per 
( not to scale ; for illustration purposes only ) . ANSI H35.1 requirements ) . Samples from the 7xxx alumi 
FIG . 2 is a cross - sectional schematic view of a portion of num alloy sheet were taken , after which the outer surfaces 

a prepared aluminum alloy product due to laser treatment of the samples were cleaned with an organic solvent ( e.g. , 
( not to scale ; for illustration purposes only ) . 25 hexane ) . The samples were then exposed to an Nd : YAG 
FIG . 3 is a flow chart illustrating one embodiment of a laser ( Adapt Laser model CL300 ) , which is a pulse - type 

method for producing prepared aluminum alloy products in laser unit having a 300 W power rating . The pulse duration 
accordance with the present disclosure . used to treat the samples varied from 80 to 200 ns . A beam 
FIG . 4 is a flow chart illustrating one embodiment of the diameter of 390 um was used for the treatment . Some 

receiving step of FIG . 3 . 30 samples were exposed to a first pulse frequency condition 
FIG . 5 is a flow chart illustrating one embodiment of the ( 1 ) of 35 kHz , while other samples were exposed to a second 

ablating step of FIG . 3 . pulse frequency condition ( 2 ) of 25 kHz . 
FIG . 6 is a flow chart illustrating additional embodiments After the laser treatment , the samples were then treated 

of the method of FIG . 3 . with a phosphorous - containing organic acid at 150 ° F. for 8 
FIGS . 7a - 7c are XPS graphs from Example 1 illustrating 35 seconds to produce a functionalized layer thereon . The 

various concentrations and thicknesses of various 7xxx samples were then sequentially bonded and then subjected to 
aluminum alloy products , the figures being as - received an industry standard cyclical corrosion exposure test , similar 
( FIG . 7a ) , laser treated at 25 kHz ( FIG . 7b ) , and as func- to ASTM D1002 , which continuously exposes the samples 
tionalized ( FIG . 7c ) . to 1080 psi lap shear stresses to test bond durability . The 

FIGS . 7d - 7f are XPS graphs from Example 1 illustrating 40 results are provided in Table 1 , below . 
various concentrations and thicknesses of various 7xxx 
aluminum alloy products , the figures being as - received TABLE 1 
( FIG . 7d ) , laser treated at 35 kHz ( FIG . 7e ) , and as func 
tionalized ( FIG . 71 ) . Sample Testing Results 

FIGS . 8a and 8b are SEM images of the Example 1 alloy 45 
( 80x magnification ) , prior to laser treatment ( FIG . 8a ) and Frequency Number of Cycles Completed 
after laser treatment at 25 kHz ( FIG . 86 ) . 

Condition FIGS . 8c and 8d are SEM images of the Example 1 alloy Specimen 1 Specimen 2 Specimen 3 Specimen 4 

( 80x and 350x magnifications , respectively ) after laser treat- Cond . 1 
ment at 35 kHz ( FIG . 8c ) and 25 kHz ( FIG . 8d ) . 50 ( 35 KHz ) 
FIG . 8e is a close - up of FIG . 8d . Cond . 2 

( 25 KHz ) FIG . 8f is a backscattered SEM image of a surface of a 
conventional ( not ablated ) 7xxx aluminum alloy sheet prod 
uct . As shown , none of the samples at the pulse frequency 1 

FIGS . 9a and 9b are SEM backscattered images of the 55 condition successfully completed the 45 cycles required to 
Example 1 alloy ( 80x magnification ) , prior to laser treatment pass the test . However , three of the four samples treated at 
( FIG . 9a ) and after laser treatment at 25 kHz ( FIG . 96 ) . the pulse frequency 2 condition successfully completed the 
FIG . 9c is an SEM backscattered image of the Example 1 45 cycles required to pass the test , and the specimen that 

alloy ( 80x magnification ) after laser treatment at 35 kHz . failed did so after 34 cycles , well above the number of cycles 
FIGS . 10a and 10b are additional SEM backscatter 60 realized by the pulse frequency 1 condition samples . 

images of the Example 1 alloy ( 2000x magnification ) , prior XPS ( X - ray photoelectron spectroscopy ) and SEM ( scan 
to laser treatment ( FIG . 10a ) and after laser treatment at 25 ning electron microscopy ) were performed on some of the 
kHz ( FIG . 106 ) . samples , both before and after laser treatment , as well as 
FIGS . 11a and 11b are additional SEM backscatter images after functionalization by the phosphorous - containing 

of the Example 1 alloy ( 15000x magnification ) , prior to laser 65 organic acid . FIGS . 7a , 76 , and 7c are graphs plotting XPS 
treatment ( FIG . 11a ) and after laser treatment at 25 kHz results from a first Example 1 sample ( A ) . FIG . 7a plots XPS 
( FIG . 11b ) . results of the as - received sample A prior to laser treatment 

Pulse 

4 4 7 7 

45 34 45 45 
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at the pulse frequency 2 condition ( 25 kHz ) , according to the resulting in the pit - like voids ( 800 ) visible in FIGS . 86 , 8d , 
protocol described above . FIG . 76 plots XPS results of 9b , 10b , and 11b . By contrast , the pit - like voids ( 800 ) are 
sample A after laser treatment at the pulse frequency con- notably absent from the SEM images of laser treatment 
dition 2. FIG . 7c plots XPS results of sample A after its pulse frequency condition 1 - exposed samples , as shown in 
laser - treated surface was contacted with the phosphorus- 5 FIGS . 8c and 9c . Notably , FIG . 8d illustrates a roll grind line 
containing organic acid , per the procedure described above . ( 830 ) . 
In each of the graphs depicted in FIGS . 7a - 7c , concentra- For example , in FIG . 10a , Fe - bearing intermetallic par 
tions ( atom % , y - axis ) of surficial constituents are plotted ticles are visible as bright particles of up to about 2 um in 
against distances ( nm , X - axis ) . As shown in FIGS . 7a and 7b , size . Also visible in FIGS . 10a and 11a are finer ( e.g. , 
the oxide layer ( labeled “ O ” ) is greater than 10 nanometers 10 smaller in size than those labeled “ Fe - bearing ” ) bright 
( nm ) thick and the concentration of Mg is greater than 10 particles representing the M - phase Mg ( Zn , Al , Cu ) 2 particles 
atomic percent ( % ) both before and after laser treatment at and dispersoids . Further , in FIG . 10a , dark particles repre 
condition 2 , and the components of the oxide layer remain sent Mg , Si or pores . In FIGS . 10b and 11b , pit - like voids 
relatively unchanged . ( 800 ) in the surface show locations of intermetallic particles 

FIGS . 7d , 7e , and 7f are graphs plotting XPS results from 15 ablated by action of the laser treatment . The very fine pit - like 
a second Example 1 sample ( B ) . FIG . 7d plots XPS results voids ( 800 ) shown in FIGS . 106 and 11b correspond to 
of the as - received sample B prior to laser treatment at the pre - ablation locations of the M - phase particles Mg ( Zn , Al , 
pulse frequency 1 condition ( 35 kHz ) , according to the Cu ) 2 . Mg2Si particles were also ablated , as shown in FIG . 
protocol described above . FIG . 7e plots XPS results of 10b . 
sample B after laser treatment at pulse frequency condition 20 FIGS . 12a and 12b are SEM images ( 250x magnification ) 
1. FIG . 7f plots XPS results of sample B after its laser - treated of cross sections of sample A of Example 1 before and after 
surface was contacted with the phosphorus - containing laser treatment at pulse frequency condition 2 , respectively . 
organic acid , per the procedure described above . In each of FIG . 13a is an SEM image ( 250x ) of a longitudinal section 
the graphs depicted in FIGS . 7e and 7f , concentrations ( atom of sample A before laser treatment at pulse frequency 
% , y - axis ) of surficial constituents are plotted against dis- 25 condition 2. FIG . 13b is an SEM image ( 250x ) of a cross 
tances ( nm , x - axis ) . The results shown in FIGS . 7c and 7d section of sample A after laser treatment at pulse frequency 
also demonstrate that the oxide layer is greater than 10 nm condition 2. The pit - like voids ( 800 ) are also visible in FIG . 
thick and the concentration of Mg is greater than 10 atom % 12b . While not being bound by any theory , it is believed the 
both before and after laser treatment at condition 1 , and the pitting facilitates penetration of the phosphorous - containing 
components of the oxide layer remain relatively unchanged . 30 organic acid into the oxide during the pretreatment , which 

Although the XPS results of the samples treated at pulse facilitates sufficient adhesion of the polymer ( e.g. , adhesive 
frequency conditions 1 and 2 are substantially similar , bonding agent ) to the oxide layer . 
analysis of the SEM micrographs depicted in FIGS . 8-13 Further , the laser treatment at pulse frequency condition 2 
shed light on the superior bond durability performance of the selectively ablates intermetallic particles without modifying 
pulse frequency condition 2 - exposed samples as compared 35 the aluminum matrix underlying the surface oxide layer . 
to samples exposed to the pulse frequency condition 1 . This result is seen in comparing FIG . 12a with FIG . 12b , 
FIGS . 8a and 8b are SEM images ( 80x magnification ) of where the overall aluminum alloy grain structure near the 
sample A of Example 1 before and after laser treatment at surface is not substantially changed after the laser treatment , 
pulse frequency condition 2 , respectively . FIG . 8c is an SEM which indicates that no melting of the aluminum matrix 
image ( 80x magnification ) of sample B of Example 1 after 40 occurred as a result of the laser treatment at pulse frequency 
laser treatment at pulse frequency condition 1. FIG . 8d is an condition 2. It was also observed that the laser treatment of 
SEM image ( 350x magnification of sample A of Example 1 sample A at pulse frequency condition 1 ablated the organic 
after laser treatment at pulse frequency condition 2. FIGS . components ( e.g. , residual lubricant ) from the surface result 
9a and 9b are backscattered SEM images ( 80x magnifica- ing in a clean surface . Moreover , comparing FIG . 13a with 
tion ) of sample A before and after laser treatment at pulse 45 FIG . 13b further illustrates that the pulse frequency condi 
frequency condition 2 , respectively . FIG . 9c is a backscat- tion 2 laser treatment left behind the pit - like voids ( 800 ) 
tered SEM image ( 80x magnification ) of sample B after defining the former volumes of ablated ( e.g. , volatilized ) 
laser treatment at pulse frequency condition 1. FIGS . 10a intermetallic particles ( note the relative absence of second 
and 10b are backscattered images ( 2000x magnification ) of phase particles near the surface in FIG . 13b ) . 
sample A before and after laser treatment , respectively . 50 It is believed that laser ablation of the intermetallic 
FIGS . 11a and 11b are backscattered images ( 15000x mag- particles occurred under pulse frequency condition 2 but not 
nification ) of sample A before and after laser treatment , condition 1 because of differences between the ability of the 
respectively . intermetallic particles to absorb laser beam energy rapidly 

FIGS . 8a - 8d and FIGS . 9a - 9c show that samples treated enough to volatilize the intermetallic particles . In the case of 
under both pulse frequency conditions 1 and 2 maintained 55 Example 1 sample B treated under pulse frequency condi 
substantially equivalent overall surface roughness before tion 1 ( 35 kHz ) , the Al Cu_Fe - containing intermetallic par 
and after their respective laser treatments . Comparing FIG . ticles of the 7xxx aluminum alloy sheet sample were not 
10a with FIG . 10b and FIG . 11a with 11b shows a similar ablated , but those of sample A were when treated under 
result for the pulse frequency condition 2 - exposed sample A. pulse frequency condition 2 ( 25 kHz ) . Therefore , given laser 
Notably , the surface oxide layer of the samples A and B 60 beam exposure times that were , at least on average , sub 
remains unchanged due to the laser treatment at either pulse stantially constant between samples A and B , the laser 
frequency condition 1 or pulse frequency condition 2. For treatment at 25 kHz facilitated volatilizing the intermetallic 
pulse frequency condition 2 - exposed sample A , however , particles , while the laser treatment at 35 kHz did not enable 
the surface morphology of the samples is modified due to ablation by volatilization . 
ablation of the intermetallic particles of the 7xxx aluminum 65 The results of Example 1 demonstrate that acceptable 
alloy sheet products . The laser ablation of the intermetallic bonding performance ( e.g. , achieving 45 cycles in the BDT 
particles causes ablation pitting in the surface oxide layer , testing specified above ) may be achieved without apprecia 
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bly changing , for instance , the elemental composition ( e.g. , the required 45 cycles . The residual shear strengths of the 
Mg atomic % ) , surface oxide layer thickness and / or rough- samples , measured after the completion of the exposure test , 
ness of 7xxx aluminum alloy products . Moreover , the were around 6000 psi . 
observed differences in response to laser treatment between 
the two pulse frequency conditions described above pro Example 3 — Bonding of Bare Laser Treated 

Materials vides for tuning the parameters of the laser treatment for 
ablating intermetallic particles in various aluminum alloys . 

Ablation Pitting Some of the laser ablated samples of Example 2 were 
adhesively bonded after laser ablation , but without being The ablation pits created on the surface of the strip by the 10 functionalized , i.e. , a functionalization layer was not added inventive treatment were counted on a Secondary Electron to the samples . The samples were then subjected to the same ( SE ) image of the surface . This mode highlights the topo industry standard cyclical corrosion exposure test as per graphical differences in the sample as shown in FIG . 8d for Examples 1 and 2. Nearly all of the twelve samples failed the a typical case . The image was divided into 100x100 test , with many failing within 30 cycles . Thus , laser ablation 

micrometer square sections as shown by the grid in FIG . 8e . alone does not appear to facilitate production of appropriate 
The number of ablation pits in each of the six full squares 7xxx aluminum alloy products for adhesive bonding . A 
was counted and classified into three size groups : ( a ) less functionalization step / a functionalization layer appears nec 
than 5 micrometers , ( b ) 5 to less than 10 micrometers , and essary . 
( c ) 10 to 20 micrometers ( no ablation pits were greater than 
20 micrometers for this particular sample ) . There was sub- 20 Example 4 Etching Instead of Functionalization 
stantial variation in the number and size of ablation pits in 
each square as a result of the alignment of the constituent Some of the laser ablated samples of Example 2 were 
intermetallic particles in the rolling direction and highly prepared for adhesive bonding by a chemical etching in a 
non - uniform distribution shown in FIG . 86. The ablation pit dilute acid solution prior to bonding , but without being 
counts obtained were : 80 pits < 5 micrometers , 30 pits in size 25 functionalized , i.e. , a functionalization layer was not added 
range between 5 and < 10 micrometers , and 7 pits in the to the samples . The samples were then subjected to the same 

industry standard cyclical corrosion exposure test as per 10-20 micrometers size range . The larger ablation pits are 
generally due to clusters of intermetallic particles . This Examples 1 and 2. All of the eight samples failed the test 

within 19 cycles . Thus , an oxide etch is not a suitable corresponded to a total of 117 pits over a 0.06 mm² area or substitute for a functionalization treatment . to a pit density of 1950 pits / square mm . It is noted that the Whereas particular embodiments of this disclosure have ablation pits created by the present method show a rim as is been described above for purposes of illustration , it will be 
clearly visible in the larger ablation pits . Another point of evident to those skilled in the art that numerous variations on 
distinction is the presence of wrinkles ( 810 ) on the surface the details of the present disclosure may be made without 
which are likely sub - grain boundaries formed due to the 35 departing from the scope of the disclosure as defined in the 
ablation treatment ( e.g. , the wrinkles may form due to appended claims . 
heating of the surface via the energy source ) . The presence 
of ablation pits substantially larger than the intermetallic What is claimed is : 
particles of the untreated surface shown in FIG . 8f indicates 1. A method for preparing magnesium - containing alumi 
that the treatment creates a trench around individual par- 40 num alloy products for adhesive bonding , the method com 
ticles and clusters get ablated to leave a single larger pit . prising : 
A typical untreated 7xxx metal surface is shown in FIG . ( a ) receiving a magnesium - containing aluminum alloy 

8f ( the same magnification as FIG . 8e ) , and in Back Scat- product , wherein the magnesium - containing aluminum 
tered Electron ( BSE ) mode of SEM . The image shows bright alloy product comprises a matrix and a surface oxide 
constituent particles containing Fe and or Cu on a relatively 45 layer overlying the matrix ; 
smooth surface . The particles are generally smaller than 10 ( i ) wherein the surface oxide layer comprises an as 
micrometers in diameter , aligned in the direction of rolling received thickness ; 
and often in the form of clusters . Ablation pits and wrinkles ( ii ) wherein the magnesium - containing aluminum alloy 
are generally absent . product comprises intermetallic particles proximal 

the surface oxide layer , and 
Example 2 – Use of a Yb - YAG Laser ( iii ) wherein the intermetallic particles comprise Cu 

bearing intermetallic particles ; and 
Several samples of a 7xxx aluminum alloy product were ( b ) laser ablating at least some of the intermetallic par 

ablated using a Yb - YAG laser . The laser conditions were ticles and in the absence of melting of the matrix of the 
similar to those of Example 1. After laser ablation , the magnesium - containing aluminum alloy product . 

2. The method of claim 1 , wherein the laser ablating step samples were examined via SEM . The SEM analysis con comprises volatilizing the intermetallic particles . firmed that the Yb - YAG laser appropriately ablated the 3. The method of claim 1 , wherein , after the laser ablating intermetallic particles from the surface , leaving behind the step , the magnesium - containing aluminum alloy product 
characteristic ablation pits described in Example 1. There 60 comprises an ablated portion having a plurality of ablation was no sign of surface melting in the samples . voids proximal the surface oxide layer . 

After the laser treatment , the samples were functionalized 4. The method of claim 3 , wherein the intermetallic 
as per Example 1. The samples were then sequentially particles define pre - ablation volumes , and wherein , due to 
bonded and subjected to an industry standard cyclical cor- the laser ablating , at least some of the plurality of ablation 
rosion exposure test , similar to ASTM D1002 , which con- 65 voids are greater in volume than the pre - ablation volumes . 
tinuously exposes the samples to 1080 psi lap shear stresses 5. The method of claim 1 , wherein the intermetallic 
to test bond durability . All samples successfully completed particles have a size of from 100 nm to 10 um . 
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6. The method of claim 1 , wherein the laser ablating step after the determining step , completing the laser ablating 
comprises maintaining the surface oxide layer at the as- step relative to the at least one bonding location , 
received thickness . thereby creating an ablated portion . 

7. The method of claim 1 , wherein the surface oxide layer 
comprises MgO . 12. The method of claim 11 , wherein , after the laser 

8. The method of claim 7 , wherein , after the laser ablating ablating step , the magnesium - containing aluminum alloy 
step , the surface oxide layer comprises at least 10 atomic % product comprises the ablated portion surrounded by an 
Mg . unablated portion . 

9. The method of claim 1 , comprising selectively laser 13. The method of claim 12 , comprising , after the laser ablating at least some of the intermetallic particles during 
the laser ablating step , thereby creating an ablated portion 10 ablating step , contacting the magnesium - containing alumi 
surrounded by an unablated portion . num alloy product with a functionalization solution . 

10. The method of claim 1 , comprising : 14. The method of 12 , comprising selectively contacting 
( a ) determining locations of the intermetallic particles ; the ablated portion with a functionalization solution , thereby 
and a ( b ) selectively laser ablating at least some of the located 15 creating a pretreated portion of the magnesium - containing aluminum alloy product . 
intermetallic particles during the laser ablating step . 

11. The method of claim 1 , comprising : 15. The method of claim 14 , wherein the selectively 
determining at least one bonding location associated with contacting step comprises restricting contact between the 

the magnesium - containing aluminum alloy product ; unablated portion and the functionalization solution . 
and 


