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ESTIMATING DEPTH FOR A VIDEO and source frame ( s ) . A measured DPV is generated for the 
STREAM CAPTURED WITH A reference frame by warping the extracted features from the 
MONOCULAR RGB CAMERA source frame to the reference frame for each candidate depth 

and matching the warped source frame features with the 
CLAIM OF PRIORITY 5 reference frame features . A depth map and a confidence map 

are generated based on the measured DPV . In an embodi 
This application claims the benefit of U.S. Provisional ment , the measured DPV consists of a set of two - dimen 

Application No. 62 / 768,591 titled “ INVERSE RENDER sional arrays of probability values for each of a plurality of 
ING , DEPTH SENSING , AND ESTIMATION OF 3D LAY candidate depth values . 
OUT AND OBJECTS FROM A SINGLE IMAGE , ” filed 10 In an embodiment , the warp function applied to the source 
Nov. 16 , 2018 , the entire contents of which is incorporated frame features is based on relative camera pose information 
herein by reference . related to a difference between a first position of the image 

sensor associated with the reference frame and a second 
TECHNICAL FIELD position of the image sensor associated with the particular 

15 source frame . Generating the measured DPV includes apply 
The present disclosure relates to image and video pro ing a softmax function to a sum of differences between 

cessing and analysis , and , more specifically , to estimating features from the reference frame and warped features from 
depth from a sequence of image frames . each of the neighboring source frames . 

In an embodiment , the method further includes the step of 
BACKGROUND 20 processing a second reference frame and at least one source 

frame included in the sequence of input image data within a 
Understanding depth information related to a scene rep second window associated with the second reference frame 

resented in an image is crucial for three - dimensional ( 3D ) using layers of the first neural network to extract features for 
reconstruction . Active techniques for measuring depth infor the second reference frame and the at least one source frame 
mation associated with an image provide dense measure- 25 within the second window . The steps also include generating 
ments , but can often suffer from limitations such as a measured DPV for the second reference frame based on the 
restricted operating ranges , low spatial resolution , sensor features for the second reference frame and warped versions 
accuracy , and high power consumption . In addition , the of the features for the at least one source frame within the 
active sensors used to measure depth information can be second window , generating a predicted DPV for the second 
expensive and complicated to set up in order to accurately 30 reference frame by applying a warp function to the measured 
capture the depth information corresponding to an image DPV for the first reference frame , and generating an updated 
captured with a related image sensor . DPV for the second reference frame based on the predicted 

Basic deep - learning based techniques for estimating DPV and the measured DPV for the second reference frame . 
depth information from a single monocular image or a stereo In some embodiments , generating the updated DPV for 
image pair have been explored within the prior art . However , 35 the second reference frame includes multiplying the pre 
the results of these techniques have low accuracy and are dicted DPV for the second reference frame by a weight to 
unstable temporally when applied to a series of related generate a weighted predicted DPV and combining the 
images captured in video stream . Furthermore , many of weighted predicted DPV with the measured DPV for the 
these techniques are not stable across multiple domains and second reference frame . In some embodiments , generating 
only provide adequate results when the deep - learning neural 40 the updated DPV for the second reference frame includes 
network is trained for a specific domain ( e.g. , indoors vs. processing a difference between the predicted DPV and the 
outdoors ) . Thus , there is a need for addressing these issues measured DPV for the second reference frame using layers 
and / or other issues associated with the prior art . of a second neural network to generate a residual gain 

volume and summing the residual gain volume with the 
SUMMARY 45 predicted DPV to generate the updated DPV . 

In an embodiment , the method further includes a step for 
A system and method are disclosed for estimating depth refining the updated DPV by processing the updated DPV 

from image frames captured with a monocular image sensor for the second reference frame using layers of a third neural 
( e.g. , RGB ) . The technique involves generating , using a network to generate a refined DPV for the second reference 
deep - learning neural network , an estimate for a depth prob- 50 frame . The depth map and the confidence map are calculated 
ability distribution volume ( DPV ) associated with the based on the refined DPV . 
image . Rather than associating a pixel in the image with a In an embodiment , a system is disclosed for estimating 
single depth estimate and confidence value , the DPV asso- depth based on a sequence of image data . The system 
ciates a pixel or subset of pixels of the image with a set of includes a memory and at least one processor communica 
depth candidates and corresponding confidence values . In 55 tively coupled to the memory . The memory stores a 
other words , the neural network predicts a continuous prob- sequence of input image data including image frames . The 
ability distribution over the depth of the scene for each pixel at least one processor is configured to process a reference 
or subset of pixels , discretely sampled at various depths frame and at least one source frame included in the sequence 
referred to as candidate depth values . of input image data within a window associated with the 
A method , computer readable medium , and system are 60 reference frame using layers of a first neural network to 

disclosed for estimating depth . In one embodiment , a extract features for the reference frame and the at least one 
method includes the steps of receiving a sequence of input source frame within the window . The at least one processor 
image data including image frames of a scene . A reference is further configured to generate a measured DPV for the 
frame and at least one source frame included in the sequence reference frame based on the features for the reference frame 
of input image data within a window associated with the 65 and warped versions of the features for the at least one 
reference frame are processed using layers of a first neural source frame and generate a depth map and a confidence 
network to extract corresponding features for the reference map based on the measured DPV . The measured DPV 
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includes a 2D array of probability values for each of a FIG . 8 is a conceptual diagram of an operating environ 
plurality of candidate depth values . ment of a system configured to capture a sequence of image 

In an embodiment , the system further includes an image frames utilizing a monocular image sensor , in accordance 
sensor configured to capture the sequence of input image with some embodiments . 
data . In an embodiment , the system also includes a posi- 5 FIG . 9 illustrates a sliding window advancing over time 
tional sensing subsystem configured to generate the relative period from time t to time t + 1 , in accordance with some 
camera pose information . In some embodiments , the posi- embodiments . 
tional sensing subsystem includes an inertial measurement FIG . 10 illustrates a system for integrating measured 
unit . DPVs over time to reduce uncertainty , in accordance with an 

In an embodiment , a non - transitory computer - readable 10 embodiment . 
media is disclosed that stores computer instructions for FIG . 11 illustrates a system for integrating measured 
estimating depth . The instructions , when executed by one or DPVs over time to reduce uncertainty utilizing a global 
more processors , cause the one or more processors to damping technique , in accordance with another embodi 
perform the steps of receiving a sequence of input image ment . 
data including image frames of a scene ; processing a refer- 15 FIG . 12 illustrates a system for integrating measured 
ence frame and at least one source frame included in the DPVs over time to reduce uncertainty utilizing an adaptive 
sequence of input image data within a window associated damping technique , in accordance with yet another embodi 
with the reference frame using layers of a first neural ment . 
network to extract features for the reference frame and the FIG . 13 illustrates a system for refining the updated DPV , 
at least one source frame within the window ; generating a 20 in accordance with some embodiments . 
measured DPV for the reference frame based on the features FIGS . 14A & 14B illustrate a flowchart of a method for 
for the reference frame and warped versions of the features estimating depth for a video stream captured using a mon 
for the at least one source frame ; and generating a depth map ocular image sensor , in accordance with another embodi 
and a confidence map based on the measured DPV . In an ment . 
embodiment , the measured DPV includes a 2D array of 25 
probability values for each of a plurality of candidate depth DETAILED DESCRIPTION 
values associated with the reference frame . Each element of 
the 2D array indicates a probability that a particular pixel or The techniques described herein utilizing neural networks 
subset of pixels of the reference frame is based on an object to estimate depth information from a sequence of images 
located at the corresponding candidate depth value in the 30 captured using a monocular image sensor . The depth infor 

mation is estimated by filtering results from the neural 
network over a number of frames included in a sliding 

BRIEF DESCRIPTION OF THE DRAWINGS window associated with the sequence of images . A neural 
network is utilized to continuously estimate depth and its 

FIG . 1 illustrates a flowchart of a method for estimating 35 uncertainty from video streams received from a monocular 
depth using a sequence of image frames from a monocular image sensor to provide accurate , robust , and temporally 
image sensor , in accordance with an embodiment . stable depth probability distributions for the video stream 
FIG . 2A illustrates a system configured to extract features frames . 

associated with an image frame , in accordance with an The system is composed of three neural network modules : 
embodiment . 40 D - Net , K - Net , and R - Net . The negative log - likelihood 
FIG . 2B is a conceptual illustration of a depth probability ( NLL ) loss over the depth is used to train the entire network 

volume as defined in accordance with a view frustum in end - to - end fashion . The first neural network module , 
associated with a monocular image sensor , in accordance D - Net , can be used to extract image features from a single 
with an embodiment . image frame . The extracted image features can be used to 
FIG . 3 illustrates a parallel processing unit , in accordance 45 directly estimate a DPV for the image frame corresponding 

with an embodiment . to a non - parametric volume represented by a frustum com 
FIG . 4A illustrates a general processing cluster within the posed of voxels originating at the image sensor . However , 

parallel processing unit of FIG . 3 , in accordance with an improved confidence in the estimate can be realized by 
embodiment . combining the extracted features for a reference frame and 
FIG . 4B illustrates a memory partition unit of the parallel 50 corresponding extracted features for at least one source 

processing unit of FIG . 3 , in accordance with an embodi- frame neighboring the reference frame , the features of each 
ment . source frame warped by a warping function to match intrin 
FIG . 5A illustrates the streaming multi - processor of FIG . sic parameters of the reference frame . The extracted features 

4A , in accordance with an embodiment . for the reference frame and the warped features for the at 
FIG . 5B is a conceptual diagram of a processing system 55 least one source frame are filtered using a softmax function 

implemented using the PPU of FIG . 3 , in accordance with an to generate a measured DPV for the reference frame that is 
embodiment . based on a plurality of image frames within a time interval 
FIG . 5C illustrates an exemplary system in which the rather than a single image frame ( or a stereo image frame ) 

various architecture and / or functionality of the various pre- captured at a particular instant in time . 
vious embodiments may be implemented . The second neural network module , K - Net , integrates a 

FIG . 6 is a conceptual diagram of a graphics processing predicted DPV over time to increase the temporal stability of 
pipeline implemented by the PPU of FIG . 3 , in accordance the system . The measured DPV for the current frame is 
with an embodiment . compared to a predicted DPV , which is a warped version of 
FIG . 7 is a conceptual diagram illustrating a system that the measured DPV from a previous frame , where the 

utilizes instances of the neural network model to generate a 65 residual signal from the comparison is processed by the 
measured DPV for a reference frame associated with a layers of the second neural network to generate a residual 
sliding window , in accordance with some embodiments . gain volume that is element - wise accumulated with the 

60 
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predicted DPV across different frames as new observations for a 2D array of pixels for each channel of the image frame . 
arrive to generate an updated DPV . Effects of propagation of In one embodiment , the pixel data comprises pixel values 
depth errors from frame - to - frame may be accounted for and including three components : a red component , a green 
mitigated using this adaptive damping technique . component , and a blue component . Data structures for 

In some embodiments , the second neural network can be 5 multiple image frames in the sequence of input image data 
omitted from the system and a global damping technique or are stored in the memory and accessible by a processor . 
no damping can be utilized to generate the updated DPV . At step 104 , a reference frame and at least one source 
With no damping , the predicted DPV and the measured DPV frame included in a sliding window associated with the 
are combined without any relative weighting . Consequently , sequence of image data are processed by layers of a first 
incorrect information estimated by the first neural network 10 neural network to extract features for the reference frame 
in the measured DPV can propagate from frame to frame and the at least one source frame . In an embodiment , the 
through the predicted DPV . With global damping , a weight reference frame is centered in the sliding window and at 
is applied to the predicted DPV when being combined with least one source frame is included within the sliding window 
the measured DPV to reduce the effect of propagation of preceding and / or subsequent to the reference frame . The 
incorrect information from frame to frame . 15 extracted features contain an estimate of the complete sta 

The third neural network , R - Net , refines the updated DPV tistical distribution of depth for a given scene captured by 
based on the features extracted from the reference frame by each image frame . 
the first neural network to up - sample the updated DPV to In an embodiment , the attributes of the first neural net 
match an original resolution of the sequence of image work ( e.g. , weights and / or bias values ) are adjusted , during 
frames . In some embodiments , the third neural network can 20 training , based on a loss function that compares the extracted 
be omitted where , for example , the features extracted by the features generated by the first neural network and the 
first neural network are generated at the same resolution , in ground - truth target features included in the set of training 
the pixel space , as the sequence of image frames or where data . The set of training data trains the neural network to 
the updated DPV is converted into a depth map at the lower more accurately estimate depth probability distributions 
resolution . 25 based on the features of the image frame . 

The neural network modules may be implemented , at At step 106 , a measured DPV is generated for the refer 
least in part , by a GPU , CPU , or any processor capable of ence frame based on extracted features for the reference 
implementing one or more components of the neural net- frame and the extracted features for the at least one source 
works . In an embodiment , each neural network can be frame . In one embodiment , the first neural network is trained 
implemented , at least in part , on a parallel processing unit . 30 to extract features from a single RGB image using a set of 
For example , a convolution layer can be implemented as a training data including computer - generated images and cor 
series of instructions executed on the parallel processing responding ground - truth features maps . In addition , features 

where calculations for different elements of a feature extracted by the first neural network for the at least one 
map are calculated in parallel . source frame are warped to match a representation of the 

It will be appreciated that the techniques , described in 35 features for the reference frame , and then the features for the 
more detail below , are useful for improving the accuracy and reference frame are combined with the warped features for 
temporal stability of depth estimation from image frames the at least one source frame to generate a measured DPV for 
captured using a monocular image sensor . The applications the reference frame . In an embodiment , the combination 
for utilizing the depth information are varied but can include includes estimating the Euclidean distance between the 
robotics , autonomous driving , and 3D model generation . 40 features of the reference frame and the warped features of 

FIG . 1 illustrates a flowchart of a method for estimating each of the source frames and applying a softmax function 
depth using a sequence of image frames from a monocular along the depth dimension to a sum of the differences over 
image sensor , in accordance with an embodiment . Although all source frames in the sliding window . 
method 100 is described in the context of a processing unit , In one embodiment , a DPV includes a set of 2D arrays of 
the method 100 may also be performed by a program , 45 probability values . Each 2D array in the set includes the 
custom circuitry , or by a combination of custom circuitry probability values for a particular candidate depth value of 
and a program . For example , the method 100 may be a plurality of candidate depth values associated with the 
executed by a GPU ( graphics processing unit ) , CPU ( central image frame . Each element of the 2D array indicates a 
processing unit ) , or any processor capable of estimating probability that a particular pixel or subset of pixels of the 
depth using a sequence of image frames . Furthermore , 50 image frame is based on an object located at the correspond 
persons of ordinary skill in the art will understand that any ing candidate depth value in the scene . In other words , the 
system that performs method 100 is within the scope and DPV includes a plurality of channels , each channel com 
spirit of embodiments of the present disclosure . prising a 2D array of probability values corresponding to a 
At step 102 , a sequence of image data is received . In one particular depth candidate value . 

embodiment , the sequence of image data includes a plurality 55 As used herein , the term “ measured DPV ” refers to a DPV 
of image frames captured by a monocular image sensor over calculated based on a plurality of features associated with 
a period of time . Each image frame in the sequence of image image frames included in the sliding window . The measured 
data is captured at a discrete time in the period of time . A DPV corresponds to a period of time over which multiple 
sliding window can be defined within the period of time that image frames are captured by the image sensor , even though 
is associated with a number of image frames ( e.g. , five 60 the measured DPV is only associated with a key reference 
image frames ) in the plurality of image frames . frame within the sliding window . 

In one embodiment , the monocular image sensor can be At step 108 , a depth map and a confidence map are 
configured to sample image sensor sites to identify intensity generated based on the measured DPV . In some embodi 
values for a particular pixel associated with one or more ments , the depth map and confidence map can be generated 
channels of the image . The image sensor is configured to 65 based on the measured DPV directly . In other embodiments , 
store pixel data for the image frame in a data structure in a the depth map and confidence map can be generated based 
memory . The data structure is configured to store pixel data on the measured DPV indirectly , such as calculating the 
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depth map and / or confidence map directly using a different In one embodiment , the layers of the first neural network 
DPV that is derived from the measured DPV , such as an 210 include a plurality of convolution layers 212 that are 
updated or refined version of the measured DPV . configured to reduce a spatial resolution of the input and 

In an embodiment , the measured DPV can be referred to , extract features of the image frame 202. The features of the 
notionally , as : 5 image frame 202 are represented by the various channels of 

the output of each layer . 
p ( d ; u , v ) , ( Eq . 1 ) In one embodiment , the plurality of convolution layers 

where d represents a depth candidate in the range of de [ dmin , 212 includes a number of stages , each stage including one or 
dmax ] , and ( u , v ) represent the pixel coordinates in the more convolution layers . A first stage includes three convo 
reference frame . Due to perspective projection associated 10 lution layers . A first convolution layer applies a convolution 
with capturing image frames with a monocular image sensor operation using a 3x3 convolution kernel to each channel of 
combined with optical components such as a lens , the the image frame 202. The first convolution layer can be 
measured DPV is defined on a view frustum attached , configured to generate an output including 32 channels , each 
virtually , to the image sensor at a position at a point in time channel having dimensions H / 2xW / 2 due to the convolution 
corresponding to the capture of the reference frame . The 15 operation using a stride of 2 in each dimension of the pixel 
parameters dmin and d , are the near and far clipping planes space . In some embodiments , the first convolution layer is 
of the frustum . followed by an activation function , such as an activation 

Given the measured DPV , a Maximum - Likelihood Esti- function implemented by a rectified linear unit ( ReLU ) , a 
mate ( MLE ) for depth and confidence can be computed as leaky ReLU , or a Sigmoid function . 
follows : In one embodiment , the activations output by the activa 

tion function are provided as the input to a second convo d ( u , v ) = 2dmindmørp ( d ; u , v ) : d ( Eq . 2 ) lution layer of the first stage . The second convolution layer 
applies a convolution operation using a 3x3 convolution C ( u , v ) = plâ ; u , v ) ( Eq . 3 ) kernel to each channel of the input to the second convolution 

It will be appreciated that Equations 2 and 3 refer to a 25 layer . The convolution operation of the second convolution 
two - dimensional depth map and a two - dimensional confi- layer uses a stride of 1 in each dimension of the pixel space 
dence map , respectively . For each pixel ( or subset of pixels ) and , therefore , the dimensions , in pixel space , of each 
of the reference frame , the depth map contains the most channel of the output of the second convolution layer 
likely estimate of the depth value for the pixel ( or subset of remains the same as the dimensions , in pixel space , of the 
pixels ) in accordance with the measured DPV and the 30 input to the second convolution layer . The second convolu 
confidence map contains the probability value for that depth tion layer can be followed by another activation function . In 
candidate sampled from the measured DPV . one embodiment , the second convolution layer is followed 

In an em ! nen the features extracted by the first by a third convolution layer , similar the second layer , but 
neural network and , subsequently , the measured DPV , depth configured to use different convolution kernels ( e.g. , kernels 
map , and / or confidence map are generated at a lower reso- 35 having different values for the kernel coefficients ) . 
lution than the image frames in the sequence of input A second stage follows the first stage and includes a 
images . For example , the features can be extracted at 1/4 the number of additional convolution layers . At least one con 
resolution in both dimensions of the pixel space and , there- volution layer in the second stage implements a convolution 
fore , each sample of the measured DPV represents a 4x4 operation using a stride of 2 to reduce the spatial resolution , 
block of pixels of the reference image . 40 in pixel space , of each channel of the output compared to the 
More illustrative information will now be set forth regard- input . 

ing various optional architectures and features with which A third stage , fourth stage , and fifth stage follow the 
the foregoing framework may be implemented , per the second stage . In one embodiment , the output of the last 
desires of the user . It should be strongly noted that the convolution layer in the convolution layers 212 is an output 
following information is set forth for illustrative purposes 45 including 128 channels , each channel having dimensions 
and should not be construed as limiting in any manner . Any H / 4xW / 4 , where H and W are the height and width of the 
of the following features may be optionally incorporated image frame 202 , respectively . The convolution operation 
with or without the exclusion of other features described . applied by each of the additional convolution layers , in one 
FIG . 2A illustrates a system 200 configured to extract embodiment , can utilize a 3x3 convolution kernel . However , 

features 204 from an image frame 202 , in accordance with 50 in other embodiments , different sized convolution kernels 
an embodiment . As depicted in FIG . 2A , the system 200 can be used instead of the 3x3 convolution kernel . Further 
includes a first neural network 210. The first neural network more , in various embodiments , each of the convolution 
210 includes a number of layers that are configured to layers may use different sized convolution kernels . For 
process , sequentially , the image frame 202 to extract the example , one convolution layer can use a 5x5 convolution 
features 204 . 55 kernel while another convolution layer can use a 3x3 con 

In one embodiment , the first neural network 210 is a volution kernel . 
convolutional neural network ( CNN ) that includes a spatial In one embodiment , at least one convolution layer imple 
pyramid module with a number of branches . The input to the ments a dilated convolution operation . As used herein , a 
first neural network 210 is an image frame 202 , which has dilated convolution operation refers to a convolution opera 
three channels , each channel having dimensions , in pixel 60 tion where the coefficients are applied to a subset of ele 
space , of HxW . The resolution of the input can be fixed , such ments within an expanded window of the input . For 
as 512 pixels by 512 pixels . Alternately , the input can be example , with a dilation factor of 2 , a 3x3 convolution 
cropped , padded , stretched , or otherwise manipulated to fit kernel is applied to a 5x5 window of elements , where every 
a fixed resolution required by first layer of the CNN . It will other element is skipped such that 9 coefficients are applied 
be appreciated that the CNN can be configured to handle any 65 to a subset of 9 elements within the 5x5 window . Dilated 
sized input including , e.g. , 1080x1920 resolution image convolution operations increase the receptive field of each 
frames . pixel without increasing the number of coefficients predicted 
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for the layer that would be required if a convolution opera- number of channels of the input can be reduced from , for 
tion using a larger convolution kernel were implemented by example , 128 channels to , e.g. , 64 channels . 
the layer . In one embodiment , the output of the fusion layers 218 are 

In one embodiment , the output of the last convolution the features 204 extracted from the image frame 202. The 
layer is supplied to a spatial pyramid module including a 5 features 204 can be used directly to generate a DPV for the 
plurality of branches 214. Each branch 214 can include a image frame 202. For example , each channel of the output 
pooling layer , a convolution layer , an activation function , represents a discrete candidate depth value . In other words , 
and a bilinear interpolation layer . In one embodiment , each each channel of the features 204 is a feature map that 
branch 214 includes a pooling layer having a different comprises an image ( e.g. , a 2D array of values ) that , at a 

10 reduced resolution of H / 4?W / 4 , includes values in the range pooling window and stride size . For example , in one 
embodiment , the plurality of branches 214 can include four of [ 0,1 ] that represent a probability that a particular pixel or 
branches : ( 1 ) a first branch 214-1 that implements a pooling group of pixels of the image frame 202 is associated with a 

particular candidate depth value corresponding to that chan layer using a pooling window of size 66x64 and stride of 64 ; nel . It will be appreciated that , in one embodiment , the ( 2 ) a second branch 214-2 that implements a pooling layer 15 channels of the features 204 have a resolution that is less 
using a pooling window of size 32 ° 32 and stride of 32 ; ( 3 ) than the resolution of the original image frame 202. Con 
a third branch 214-3 that implements a pooling layer using sequently , each probability value in the probability map for 
a pooling window of size 16x16 and stride of 16 ; and ( 4 ) a a particular depth candidate can correspond with a subset of 
fourth branch 214-4 that implements a pooling layer using a pixels in the image frame 202. In other embodiments , the 
pooling window of size 8x8 and stride of 8. The convolution 20 first neural network 210 is configured to extract the features 
layer of each branch 214 applies a convolution operation to 204 at the same resolution of the image frame 202. In yet 
the output of the pooling layer using a 1x1 convolution other embodiments , each channel of the features 204 can be 
kernel . The convolution layer also reduces the number of up - sampled in a post - processing step using , e.g. , bilinear 
channels of the input from 128 channels to 32 channels . The interpolation to match the resolution of the image frame 202 . 
activation function can be implemented by , e.g. , a ReLU . FIG . 2B is a conceptual illustration of a DPV as defined 

The bilinear interpolation layer then takes the down- in accordance with a view frustum 220 associated with a 
sampled activations from the ReLU and up - samples the monocular image sensor 230 , in accordance with an embodi 
activations back to the original resolution of the input to the ment . The frustum 220 can be divided into a number of 
branch 214. For example , the pooling layer of the first voxels ( volumetric element ) 234. Each voxel 234 is associ 
branch 214-1 calculates an average value of the activations 30 ated with a pixel or subset of pixels of an image captured by 
within each 64x64 window and sets a corresponding value the monocular image sensor 230. The voxels 234 are defined 
in the output of the pooling layer . The output of the pooling by cutting planes 236 located at the different depth locations 
layer is reduced in resolution by a factor of 64 in each ( e.g. , 236-0 , 236-1 , 236-2 , 236-3 , 236-4 , 236-5 , 236-6 , and 
dimension in the pixel space . The average values in this 236-7 ) within the scene captured by the monocular image 
down - sampled output of the pooling layer , after subsequent 35 sensor 230. A set of voxels 234 between any two cutting 
modification by the convolution layer and activation func- planes 236 ( e.g. , between cutting planes 236-5 and 236-6 ) 
tion , are then up - sampled back to the original resolution of correspond with a channel of the features 204 , where the 
the input , which , in the case of the first branch 214-1 , probability values for that channel in the features 204 are 
generates 64x64 interpolated values for each value of the predicted probabilities that an object in the scene captured 
down - sampled input to the bilinear interpolation layer . 40 by the monocular image sensor 230 intersects a voxel 234 in 

It will be appreciated that each branch 214 essentially the set of voxels between the two corresponding cutting 
filters the input at a different spatial resolution and then planes 236. The frustum 220 thereby defines a non - para 
up - samples the result to a common resolution shared at the metric volume associated with the DPV , with the depths of 
input to all of the branches 214. The output of each of the respective cutting planes 236 increasing proportionally with 
plurality of branches 214 is then concatenated , via a con- 45 distance from the image sensor 230 . 
catenation layer 216 , with the outputs of one or more layers As depicted in FIG . 2B , the depth is zero at the image 
of the convolution layers 212. In one embodiment , the sensor 230 itself , and increases with increasing distance 
output of each of the plurality of branches 214 is concat- from image sensor 230 ( e.g. , from 236-1 to 236-7 ) . Fewer or 
enated with the output of the last convolution layer in the more cutting planes 236 may be assigned when defining the 
convolution layers 212 ( e.g. , the input to the branches 214 ) 50 frustum , but it will be appreciated that a practical limit may 
as well as one additional intermediate convolution layer 212 , be imposed on the number of , and maximum value used for , 
such as the output of the third stage of the convolution layers candidate depth values for the cutting planes 236 despite an 
212. In one embodiment , the output of the concatenation image frame potentially representing an infinite depth . In 
layer 216 is an output including 320 channels , each channel addition , the distance between cutting planes is not required 
having dimensions H / 4xW / 4 . The 320 channels include 32 55 to be uniform . For example , the distance between any two 
channels from the output of each of the branches 214 , 128 cutting planes 236 can increase ( e.g. , linearly or exponen 
channels from the last convolution layer and 64 channels tially ) with the distance from the image sensor 230 . 
from the intermediate convolution layer of the convolution The features 204 can be denoted as p ( d ; u , v ) , which 
layers 212 . represents the probability of pixel ( u , v ) having a depth value 

In one embodiment , the output of the concatenation layer 60 d , where dE [ d ming dmax ] . Due to perspective projection , the 
216 is provided to one or more fusion layers 218. The fusion features 204 is defined relative to the frustum 220 attached 
layers 218 can include a first convolution layer that applies to the image sensor 230. The parameters dmin and dmax are 
a convolution operation using a 3x3 convolution kernel . The the near and far clipping planes 236 of the frustum 220 , 
number of channels of the input can be reduced from , for which is sub - divided into , e.g. , N = 65 planes over the range 
example , 320 channels to 128 channels . The fusion layers 65 of depth candidates forming 64 sets of voxels corresponding 
218 can also include a second convolution layer that applies to 64 channels of the features 204. The features 204 contain 
a convolution operation using a 1x1 convolution kernel . The the complete statistical distribution of probabilities of 
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objects represented by a pixel or block of pixels located at engines , a video encoder , a video decoder , a power man 
particular depths for a given scene captured by the image agement unit , etc. ( not explicitly shown ) . The NVLink 310 
frame 202 . is described in more detail in conjunction with FIG . 5B . 

Again , the components of the system 200 can be imple- The I / O unit 305 is configured to transmit and receive 
mented , at least in part , on a processor , such as a CPU , GPU , 5 communications ( e.g. , commands , data , etc. ) from a host 
or any other processor capable of implementing , in hard- processor ( not shown ) over the interconnect 302. The I / O 
ware , software , or a combination of hardware or software , unit 305 may communicate with the host processor directly 
the functions described herein . One such example of a via the interconnect 302 or through one or more intermediate 
parallel processing unit capable of implementing the layers devices such as a memory bridge . In an embodiment , the I / O 
of the neural network modules is described in more detail 10 unit 305 may communicate with one or more other proces 
below . sors , such as one or more the PPUS 300 via the interconnect 

302. In an embodiment , the I / O unit 305 implements a 
Parallel Processing Architecture Peripheral Component Interconnect Express ( PCIe ) inter 

face for communications over a PCIe bus and the intercon 
FIG . 3 illustrates a parallel processing unit ( PPU ) 300 , in 15 nect 302 is a PCIe bus . In alternative embodiments , the I / O 

accordance with an embodiment . In an embodiment , the unit 305 may implement other types of well - known inter 
PPU 300 is a multi - threaded processor that is implemented faces for communicating with external devices . 
on one or more integrated circuit devices . The PPU 300 is a The I / O unit 305 decodes packets received via the inter 
latency hiding architecture designed to process many threads connect 302. In an embodiment , the packets represent com 
in parallel . A thread ( e.g. , a thread of execution ) is an 20 mands configured to cause the PPU 300 to perform various 
instantiation of a set of instructions configured to be operations . The I / O unit 305 transmits the decoded com 
executed by the PPU 300. In an embodiment , the PPU 300 mands to various other units of the PPU 300 as the com 
is a graphics processing unit ( GPU ) configured to implement mands may specify . For example , some commands may be 
a graphics rendering pipeline for processing three - dimen- transmitted to the front end unit 315. Other commands may 
sional ( 3D ) graphics data in order to generate two - dimen- 25 be transmitted to the hub 330 or other units of the PPU 300 
sional ( 2D ) image data for display on a display device such such as one or more copy engines , a video encoder , a video 
as a liquid crystal display ( LCD ) device . In other embodi- decoder , a power management unit , etc. ( not explicitly 
ments , the PPU 300 may be utilized for performing general- shown ) . In other words , the I / O unit 305 is configured to 
purpose computations . While one exemplary parallel pro- route communications between and among the various logi 
cessor is provided herein for illustrative purposes , it should 30 cal units of the PPU 300 . 
be strongly noted that such processor is set forth for illus- In an embodiment , a program executed by the host 
trative purposes only , and that any processor may be processor encodes a command stream in a buffer that pro 
employed to supplement and / or substitute for the same . vides workloads the PPU 300 for processing . A workload 
One or more PPUs 300 may be configured to accelerate may comprise several instructions and data to be processed 

thousands of High Performance Computing ( HPC ) , data 35 by those instructions . The buffer is a region in a memory that 
center , and machine learning applications . The PPU 300 is accessible ( e.g. , read / write ) by both the host processor and 
may be configured to accelerate numerous deep learning the PPU 300. For example , the 1/0 unit 305 may be 
systems and applications including autonomous vehicle configured to access the buffer in a system memory con 
platforms , deep learning , high - accuracy speech , image , and nected to the interconnect 302 via memory requests trans 
text recognition systems , intelligent video analytics , 40 mitted over the interconnect 302. In an embodiment , the host 
molecular simulations , drug discovery , disease diagnosis , processor writes the command stream to the buffer and then 
weather forecasting , big data analytics , astronomy , molecu- transmits a pointer to the start of the command stream to the 
lar dynamics simulation , financial modeling , robotics , fac- PPU 300. The front end unit 315 receives pointers to one or 
tory automation , real - time language translation , online more command streams . The front end unit 315 manages the 
search optimizations , and personalized user recommenda- 45 one or more streams , reading commands from the streams 
tions , and the like . and forwarding commands to the various units of the PPU 
As shown in FIG . 3 , the PPU 300 includes an Input / 300 . 

Output ( I / O ) unit 305 , a front end unit 315 , a scheduler unit The front end unit 315 is coupled to a scheduler unit 320 
320 , a work distribution unit 325 , a hub 330 , a crossbar that configures the various GPCs 350 to process tasks 
( Xbar ) 370 , one or more general processing clusters ( GPCs ) 50 defined by the one or more streams . The scheduler unit 320 
350 , and one or more memory partition units 380. The PPU is configured to track state information related to the various 
300 may be connected to a host processor or other PPUs 300 tasks managed by the scheduler unit 320. The state may 
via one or more high - speed NVLink 310 interconnect . The indicate which GPC 350 a task is assigned to , whether the 
PPU 300 may be connected to a host processor or other task is active or inactive , a priority level associated with the 
peripheral devices via an interconnect 302. The PPU 300 55 task , and so forth . The scheduler unit 320 manages the 
may also be connected to a local memory comprising a execution of a plurality of tasks on the one or more GPCs 
number of memory devices 304. In an embodiment , the local 350 . 
memory may comprise a number of dynamic random access The scheduler unit 320 is coupled to a work distribution 
memory ( DRAM ) devices . The DRAM devices may be unit 325 that is configured to dispatch tasks for execution on 
configured as a high - bandwidth memory ( HBM ) subsystem , 60 the GPCs 350. The work distribution unit 325 may track a 
with multiple DRAM dies stacked within each device . number of scheduled tasks received from the scheduler unit 

The NVLink 310 interconnect enables systems to scale 320. In an embodiment , the work distribution unit 325 
and include one or more PPUS 300 combined with one or manages a pending task pool and an active task pool for each 
more CPUs , supports cache coherence between the PPUS of the GPCs 350. The pending task pool may comprise a 
300 and CPUs , and CPU mastering . Data and / or commands 65 number of slots ( e.g. , 32 slots ) that contain tasks assigned to 
may be transmitted by the NVLink 310 through the hub 330 be processed by a particular GPC 350. The active task pool 
to / from other units of the PPU 300 such as one or more copy may comprise a number of slots ( e.g. , 4 slots ) for tasks that 
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are actively being processed by the GPCs 350. As a GPC 350 420 for processing tasks allocated to the GPC 350. In an 
finishes the execution of a task , that task is evicted from the embodiment , the pipeline manager 410 may configure at 
active task pool for the GPC 350 and one of the other tasks least one of the one or more DPCs 420 to implement at least 
from the pending task pool is selected and scheduled for a portion of a graphics rendering pipeline . For example , a 
execution on the GPC 350. If an active task has been idle on 5 DPC 420 may be configured to execute a vertex shader 
the GPC 350 , such as while waiting for a data dependency program on the programmable streaming multiprocessor 
to be resolved , then the active task may be evicted from the ( SM ) 440. The pipeline manager 410 may also be configured 
GPC 350 and returned to the pending task pool while to route packets received from the work distribution unit 325 
another task in the pending task pool is selected and sched- to the appropriate logical units within the GPC 350. For 
uled for execution on the GPC 350 . 10 example , some packets may be routed to fixed function 

The work distribution unit 325 communicates with the hardware units in the PROP 415 and / or raster engine 425 
one or more GPCs 350 via XBar 370. The XBar 370 is an while other packets may be routed to the DPCs 420 for 
interconnect network that couples many of the units of the processing by the primitive engine 435 or the SM 440. In an 
PPU 300 to other units of the PPU 300. For example , the embodiment , the pipeline manager 410 may configure at 
XBar 370 may be configured to couple the work distribution 15 least one of the one or more DPCs 420 to implement a neural 
unit 325 to a particular GPC 350. Although not shown network model and / or a computing pipeline . 
explicitly , one or more other units of the PPU 300 may also The PROP unit 415 is configured to route data generated 
be connected to the XBar 370 via the hub 330 . by the raster engine 425 and the DPCs 420 to a Raster 

The tasks are managed by the scheduler unit 320 and Operations ( ROP ) unit , described in more detail in conjunc 
dispatched to a GPC 350 by the work distribution unit 325. 20 tion with FIG . 4B . The PROP unit 415 may also be config 
The GPC 350 is configured to process the task and generate ured to perform optimizations for color blending , organize 
results . The results may be consumed by other tasks within pixel data , perform address translations , and the like . 
the GPC 350 , routed to a different GPC 350 via the XBar The raster engine 425 includes a number of fixed function 
370 , or stored in the memory 304. The results can be written hardware units configured to perform various raster opera 
to the memory 304 via the memory partition units 380 , 25 tions . In an embodiment , the raster engine 425 includes a 
which implement a memory interface for reading and writ- setup engine , a coarse raster engine , a culling engine , a 
ing data to / from the memory 304. The results can be clipping engine , a fine raster engine , and a tile coalescing 
transmitted to another PPU 304 or CPU via the NVLink 310 . engine . The setup engine receives transformed vertices and 
In an embodiment , the PPU 300 includes a number U of generates plane equations associated with the geometric 
memory partition units 380 that is equal to the number of 30 primitive defined by the vertices . The plane equations are 
separate and distinct memory devices 304 coupled to the transmitted to the coarse raster engine to generate coverage 
PPU 300. A memory partition unit 380 will be described in information ( e.g. , an x , y coverage mask for a tile ) for the 
more detail below in conjunction with FIG . 4B . primitive . The output of the coarse raster engine is trans 

In an embodiment , a host processor executes a driver mitted to the culling engine where fragments associated with 
kernel that implements an application programming inter- 35 the primitive that fail a z - test are culled , and transmitted to 
face ( API ) that enables one or more applications executing a clipping engine where fragments lying outside a viewing 
on the host processor to schedule operations for execution frustum are clipped . Those fragments that survive clipping 
on the PPU 300. In an embodiment , multiple compute and culling may be passed to the fine raster engine to 
applications are simultaneously executed by the PPU 300 generate attributes for the pixel fragments based on the plane 
and the PPU 300 provides isolation , quality of service 40 equations generated by the setup engine . The output of the 
( QoS ) , and independent address spaces for the multiple raster engine 425 comprises fragments to be processed , for 
compute applications . An application may generate instruc- example , by a fragment shader implemented within a DPC 
tions ( e.g. , API calls ) that cause the driver kernel to generate 420 . 
one or more tasks for execution by the PPU 300. The driver Each DPC 420 included in the GPC 350 includes an 
kernel outputs tasks to one or more streams being processed 45 M - Pipe Controller ( MPC ) 430 , a primitive engine 435 , and 
by the PPU 300. Each task may comprise one or more one or more SMs 440. The MPC 430 controls the operation 
groups of related threads , referred to herein as a warp . In an of the DPC 420 , routing packets received from the pipeline 
embodiment , a warp comprises 32 related threads that may manager 410 to the appropriate units in the DPC 420. For 
be executed in parallel . Cooperating threads may refer to a example , packets associated with a vertex may be routed to 
plurality of threads including instructions to perform the task 50 the primitive engine 435 , which is configured to fetch vertex 
and that may exchange data through shared memory . attributes associated with the vertex from the memory 304 . 
Threads and cooperating threads are described in more detail In contrast , packets associated with a shader program may 
in conjunction with FIG . 5A . be transmitted to the SM 440 . 
FIG . 4A illustrates a GPC 350 of the PPU 300 of FIG . 3 , The SM 440 comprises a programmable streaming pro 

in accordance with an embodiment . As shown in FIG . 4A , 55 cessor that is configured to process tasks represented by a 
each GPC 350 includes a number of hardware units for number of threads . Each SM 440 is multi - threaded and 
processing tasks . In an embodiment , each GPC 350 includes configured to execute a plurality of threads ( e.g. , 32 threads ) 
a pipeline manager 410 , a pre - raster operations unit ( PROP ) from a particular group of threads concurrently . In an 
415 , a raster engine 425 , a work distribution crossbar embodiment , the SM 440 implements a SIMD ( Single 
( WDX ) 480 , a memory management unit ( MMU ) 490 , and 60 Instruction , Multiple - Data ) architecture where each thread 
one or more Data Processing Clusters ( DPCs ) 420. It will be in a group of threads ( e.g. , a warp ) is configured to process 
appreciated that the GPC 350 of FIG . 4A may include other a different set of data based on the same set of instructions . 
hardware units in lieu of or in addition to the units shown in All threads in the group of threads execute the same instruc 
FIG . 4A . tions . In another embodiment , the SM 440 implements a 

In an embodiment , the operation of the GPC 350 is 65 SIMT ( Single - Instruction , Multiple Thread ) architecture 
controlled by the pipeline manager 410. The pipeline man- where each thread in a group of threads is configured to 
ager 410 manages the configuration of the one or more DPCs process a different set of data based on the same set of 
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instructions , but where individual threads in the group of services allowing the PPU 300 to directly access a CPU's 
threads are allowed to diverge during execution . In an page tables and providing full access to CPU memory by the 
embodiment , a program counter , call stack , and execution PPU 300 . 
state is maintained for each warp , enabling concurrency In an embodiment , copy engines transfer data between 
between warps and serial execution within warps when 5 multiple PPUs 300 or between PPUs 300 and CPUs . The 
threads within the warp diverge . In another embodiment , a copy engines can generate page faults for addresses that are 
program counter , call stack , and execution state is main- not mapped into the page tables . The memory partition unit 
tained for each individual thread , enabling equal concur 380 can then service the page faults , mapping the addresses 
rency between all threads , within and between warps . When into the page table , after which the copy engine can perform 
execution state is maintained for each individual thread , 10 the transfer . In a conventional system , memory is pinned 
threads executing the same instructions may be converged ( e.g. , non - pageable ) for multiple copy engine operations 
and executed in parallel for maximum efficiency . The SM between multiple processors , substantially reducing the 

available memory . With hardware page faulting , addresses 440 will be described in more detail below in conjunction can be passed to the copy engines without worrying if the with FIG . 5A . 15 memory pages are resident , and the copy process is trans The MMU 490 provides an interface between the GPC parent . 
350 and the memory partition unit 380. The MMU 490 may Data from the memory 304 or other system memory may 
provide translation of virtual addresses into physical be fetched by the memory partition unit 380 and stored in the 
addresses , memory protection , and arbitration of memory L2 cache 460 , which is located on - chip and is shared 
requests . In an embodiment , the MMU 490 provides one or 20 between the various GPCs 350. As shown , each memory 
more translation lookaside buffers ( TLBs ) for performing partition unit 380 includes a portion of the L2 cache 460 
translation of virtual addresses into physical addresses in the associated with a corresponding memory device 304. Lower 
memory 304 . level caches may then be implemented in various units 

FIG . 4B illustrates a memory partition unit 380 of the within the GPCs 350. For example , each of the SMs 440 
PPU 300 of FIG . 3 , in accordance with an embodiment . As 25 may implement a level one ( L1 ) cache . The L1 cache is 
shown in FIG . 4B , the memory partition unit 380 includes a private memory that is dedicated to a particular SM 440 . 
Raster Operations ( ROP ) unit 450 , a level two ( L2 ) cache Data from the L2 cache 460 may be fetched and stored in 
460 , and a memory interface 470. The memory interface 470 each of the L1 caches for processing in the functional units 
is coupled to the memory 304. Memory interface 470 may of the SMs 440. The L2 cache 460 is coupled to the memory 
implement 32 , 64 , 128 , 1024 - bit data buses , or the like , for 30 interface 470 and the XBar 370 . The ROP unit 450 performs graphics raster operations high - speed data transfer . In an embodiment , the PPU 300 related to pixel color , such as color compression , pixel incorporates U memory interfaces 470 , one memory inter blending , and the like . The ROP unit 450 also implements face 470 per pair of memory partition units 380 , where each depth testing in conjunction with the raster engine 425 , pair of memory partition units 380 connected to a corre 35 receiving a depth for a sample location associated with a sponding memory device 304. For example , PPU 300 may pixel fragment from the culling engine of the raster engine 
be connected to up to Y memory devices 304 , such as high 425. The depth is tested against a corresponding depth in a 
bandwidth memory stacks or graphics double - data - rate , depth buffer for a sample location associated with the 
version 5 , synchronous dynamic random access memory , or fragment . If the fragment passes the depth test for the sample 
other types of persistent storage . 40 location , then the ROP unit 450 updates the depth buffer and 

In an embodiment , the memory interface 470 implements transmits a result of the depth test to the raster engine 425 . 
an HBM2 memory interface and Y equals half U. In an It will be appreciated that the number of memory partition 
embodiment , the HBM2 memory stacks are located on the units 380 may be different than the number of GPCs 350 
same physical package as the PPU 300 , providing substan- and , therefore , each ROP unit 450 may be coupled to each 
tial power and area savings compared with conventional 45 of the GPCs 350. The ROP unit 450 tracks packets received 
GDDR5 SDRAM systems . In an embodiment , each HBM2 from the different GPCs 350 and determines which GPC 350 
stack includes four memory dies and Y equals 4 , with HBM2 that a result generated by the ROP unit 450 is routed to 
stack including two 128 - bit channels per die for a total of 8 through the Xbar 370. Although the ROP unit 450 is 
channels and a data bus width of 1024 bits . included within the memory partition unit 380 in FIG . 4B , 

In an embodiment , the memory 304 supports Single - Error 50 in other embodiment , the ROP unit 450 may be outside of 
Correcting Double - Error Detecting ( SECDED ) Error Cor- the memory partition unit 380. For example , the ROP unit 
rection Code ( ECC ) to protect data . ECC provides higher 450 may reside in the GPC 350 or another unit . 
reliability for compute applications that are sensitive to data FIG . 5A illustrates the streaming multi - processor 440 of 
corruption . Reliability is especially important in large - scale FIG . 4A , in accordance with an embodiment . As shown in 
cluster computing environments where PPUs 300 process 55 FIG . 5A , the SM 440 includes an instruction cache 505 , one 
very large datasets and / or run applications for extended or more scheduler units 510 , a register file 520 , one or more 
periods . processing cores 550 , one or more special function units 

In an embodiment , the PPU 300 implements a multi - level ( SFUs ) 552 , one or more load / store units ( LSUs ) 554 , an 
memory hierarchy . In an embodiment , the memory partition interconnect network 580 , a shared memory / L1 cache 570 . 
unit 380 supports a unified memory to provide a single 60 As described above , the work distribution unit 325 dis 
unified virtual address space for CPU and PPU 300 memory , patches tasks for execution on the GPCs 350 of the PPU 300 . 
enabling data sharing between virtual memory systems . In The tasks are allocated to a particular DPC 420 within a 
an embodiment the frequency of accesses by a PPU 300 to GPC 350 and , if the task is associated with a shader 
memory located on other processors is traced to ensure that program , the task may be allocated to an SM 440. The 
memory pages are moved to the physical memory of the 65 scheduler unit 510 receives the tasks from the work distri 
PPU 300 that is accessing the pages more frequently . In an bution unit 325 and manages instruction scheduling for one 
embodiment , the NVLink 310 supports address translation or more thread blocks assigned to the SM 440. The scheduler 
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unit 510 schedules thread blocks for execution as warps of configured to perform deep learning matrix arithmetic , such 
parallel threads , where each thread block is allocated at least as convolution operations for neural network training and 
one warp . In an embodiment , each warp executes 32 threads . inferencing . In an embodiment , each tensor core operates on 
The scheduler unit 510 may manage a plurality of different a 4x4 matrix and performs a matrix multiply and accumulate 
thread blocks , allocating the warps to the different thread 5 operation D = AxB + C , where A , B , C , and D are 4x4 matri 
blocks and then dispatching instructions from the plurality 
of different cooperative groups to the various functional In an embodiment , the matrix multiply inputs A and B are 
units ( e.g. , cores 550 , SFUS 552 , and LSUs 554 ) during each 16 - bit floating point matrices , while the accumulation matri 
clock cycle . ces C and D may be 16 - bit floating point or 32 - bit floating 

Cooperative Groups is a programming model for orga- 10 point matrices . Tensor Cores operate on 16 - bit floating point 
nizing groups of communicating threads that allows devel- input data with 32 - bit floating point accumulation . The 
opers to express the granularity at which threads are com- 16 - bit floating point multiply requires 64 operations and 
municating , enabling the expression of richer , more efficient results in a full precision product that is then accumulated 
parallel decompositions . Cooperative launch APIs support using 32 - bit floating point addition with the other interme 
synchronization amongst thread blocks for the execution of 15 diate products for a 4x4x4 matrix multiply . In practice , 
parallel algorithms . Conventional programming models pro- Tensor Cores are used to perform much larger two - dimen 
vide a single , simple construct for synchronizing cooperat- sional or higher dimensional matrix operations , built up 
ing threads : a barrier across all threads of a thread block from these smaller elements . An API , such as CUDA 9 C ++ 
( e.g. , the syncthreads ( ) ) function ) . However , programmers API , exposes specialized matrix load , matrix multiply and 
would often like to define groups of threads at smaller than 20 accumulate , and matrix store operations to efficiently use 
thread block granularities and synchronize within the Tensor Cores from a CUDA - C ++ program . At the CUDA 
defined groups to enable greater performance , design flex- level , the warp - level interface assumes 16x16 size matrices 
ibility , and software reuse in the form of collective group- spanning all 32 threads of the warp . 
wide function interfaces . Each SM 440 also comprises M SFUS 552 that perform 

Cooperative Groups enables programmers to define 25 special functions ( e.g. , attribute evaluation , reciprocal 
groups of threads explicitly at sub - block ( e.g. , as small as a square root , and the like ) . In an embodiment , the SFUs 552 
single thread ) and multi - block granularities , and to perform may include a tree traversal unit configured to traverse a 
collective operations such as synchronization on the threads hierarchical tree data structure . In an embodiment , the SFUS 
in a cooperative group . The programming model supports 552 may include texture unit configured to perform texture 
clean composition across software boundaries , so that librar- 30 map filtering operations . In an embodiment , the texture units 
ies and utility functions can synchronize safely within their are configured to load texture maps ( e.g. , a 2D array of 
local context without having to make assumptions about texels ) from the memory 304 and sample the texture maps 
convergence . Cooperative Groups primitives enable new to produce sampled texture values for use in shader pro 
patterns of cooperative parallelism , including producer - con- grams executed by the SM 440. In an embodiment , the 
sumer parallelism , opportunistic parallelism , and global 35 texture maps are stored in the shared memory / L1 cache 470 . 
synchronization across an entire grid of thread blocks . The texture units implement texture operations such as 
A dispatch unit 515 is configured to transmit instructions filtering operations using mip - maps ( e.g. , texture maps of 

to one or more of the functional units . In the embodiment , varying levels of detail ) . In an embodiment , each SM 340 
the scheduler unit 510 includes two dispatch units 515 that includes two texture units . 
enable two different instructions from the same warp to be 40 Each SM 440 also comprises NLSUs 554 that implement 
dispatched during each clock cycle . In alternative embodi- load and store operations between the shared memory / L1 
ments , each scheduler unit 510 may include a single dispatch cache 570 and the register file 520. Each SM 440 includes 
unit 515 or additional dispatch units 515 . an interconnect network 580 that connects each of the 

Each SM 440 includes a register file 520 that provides a functional units to the register file 520 and the LSU 554 to 
set of registers for the functional units of the SM 440. In an 45 the register file 520 , shared memory / L1 cache 570. In an 
embodiment , the register file 520 is divided between each of embodiment , the interconnect network 580 is a crossbar that 
the functional units such that each functional unit is allo- can be configured to connect any of the functional units to 
cated a dedicated portion of the register file 520. In another any of the registers in the register file 520 and connect the 
embodiment , the register file 520 is divided between the LSUs 554 to the register file and memory locations in shared 
different warps being executed by the SM 440. The register 50 memory / L1 cache 570 . 
file 520 provides temporary storage for operands connected The shared memory / L1 cache 570 is an array of on - chip 
to the data paths of the functional units . memory that allows for data storage and communication 

Each SM 440 comprises L processing cores 550. In an between the SM 440 and the primitive engine 435 and 
embodiment , the SM 440 includes a large number ( e.g. , 128 , between threads in the SM 440. In an embodiment , the 
etc. ) of distinct processing cores 550. Each core 550 may 55 shared memory / L1 cache 570 comprises 128 KB of storage 
include a fully - pipelined , single - precision , double - precision , capacity and is in the path from the SM 440 to the memory 
and / or mixed precision processing unit that includes a partition unit 380. The shared memory / L1 cache 570 can be 
floating point arithmetic logic unit and an integer arithmetic used to cache reads and writes . One or more of the shared 
logic unit . In an embodiment , the floating point arithmetic memory / L1 cache 570 , L2 cache 460 , and memory 304 are 
logic units implement the IEEE 754-2008 standard for 60 backing stores . 
floating point arithmetic . In an embodiment , the cores 550 Combining data cache and shared memory functionality 
include 64 single - precision ( 32 - bit ) floating point cores , 64 into a single memory block provides the best overall per 
integer cores , 32 double - precision ( 64 - bit ) floating point formance for both types of memory accesses . The capacity 
cores , and 8 tensor cores . is usable as a cache by programs that do not use shared 

Tensor cores configured to perform matrix operations , 65 memory . For example , if shared memory is configured to use 
and , in an embodiment , one or more tensor cores are half of the capacity , texture and load / store operations can use 
included in the cores 550. In particular , the tensor cores are the remaining capacity . Integration within the shared 
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memory / L1 cache 570 enables the shared memory / L1 cache situated on a single semiconductor platform to form a 
570 to function as a high - throughput conduit for streaming parallel processing module 525. In an embodiment , the 
data while simultaneously providing high - bandwidth and switch 510 supports two or more protocols to interface 
low - latency access to frequently reused data . between various different connections and / or links . 
When configured for general purpose parallel computa- 5 In another embodiment ( not shown ) , the NVLink 310 

tion , a simpler configuration can be used compared with provides one or more high - speed communication links graphics processing . Specifically , the fixed function graphics between each of the PPUS 300 and the CPU 530 and the 
processing units shown in FIG . 3 , are bypassed , creating a switch 510 interfaces between the interconnect 302 and each 
much simpler programming model . In the general purpose of the PPUS 300. The PPUS 300 , memories 304 , and 
parallel computation configuration , the work distribution 10 interconnect 302 may be situated on a single semiconductor unit 325 assigns and distributes blocks of threads directly to platform to form a parallel processing module 525. In yet the DPCs 420. The threads in a block execute the same another embodiment ( not shown ) , the interconnect 302 program , using a unique thread ID in the calculation to 
ensure each thread generates unique results , using the SM provides one or more communication links between each of 

the PPUS 300 and the CPU 530 and the switch 510 interfaces 440 to execute the program and perform calculations , shared 15 
memory / L1 cache 570 to communicate between threads , and between each of the PPUS 300 using the NVLink 310 to 
the LSU 554 to read and write global memory through the provide one or more high - speed communication links 
shared memory / L1 cache 570 and the memory partition unit between the PPUS 300. In another embodiment ( not shown ) , 
380. When configured for general purpose parallel compu the NVLink 310 provides one or more high - speed commu 
tation , the SM 440 can also write commands that the 20 nication links between the PPUs 300 and the CPU 530 
scheduler unit 320 can use to launch new work on the DPCs through the switch 510. In yet another embodiment ( not 
420 . shown ) , the interconnect 302 provides one or more commu 

The PPU 300 may be included in a desktop computer , a nication links between each of the PPUS 300 directly . One 
laptop computer , a tablet computer , servers , supercomputers , or more of the NVLink 310 high - speed communication links 
a smart - phone ( e.g. , a wireless , hand - held device ) , personal 25 may be implemented as a physical NVLink interconnect or 
digital assistant ( PDA ) , a digital camera , a vehicle , a head either an on - chip or on - die interconnect using the same 
mounted display , a hand - held electronic device , and the like . protocol as the NVLink 310 . 
In an embodiment , the PPU 300 is embodied on a single In the context of the present description , a single semi 
semiconductor substrate . In another embodiment , the PPU conductor platform may refer to a sole unitary semiconduc 
300 is included in a system - on - a - chip ( SOC ) along with one 30 tor - based integrated circuit fabricated on a die or chip . It 
or more other devices such as additional PPUS 300 , the should be noted that the term single semiconductor platform 
memory 304 , a reduced instruction set computer ( RISC ) may also refer to multi - chip modules with increased con 
CPU , a memory management unit ( MMU ) , a digital - to- nectivity which simulate on - chip operation and make sub 
analog converter ( DAC ) , and the like . stantial improvements over utilizing a conventional bus 

In an embodiment , the PPU 300 may be included on a 35 implementation . Of course , the various circuits or devices 
graphics card that includes one or more memory devices may also be situated separately or in various combinations 
304. The graphics card may be configured to interface with of semiconductor platforms per the desires of the user . 
a PCIe slot on a motherboard of a desktop computer . In yet Alternately , the parallel processing module 525 may be 
another embodiment , the PPU 300 may be an integrated implemented as a circuit board substrate and each of the 
graphics processing unit ( IGPU ) or parallel processor 40 PPUs 300 and / or memories 304 may be packaged devices . 
included in the chipset of the motherboard . In an embodiment , the CPU 530 , switch 510 , and the parallel 

processing module 525 are situated on a single semiconduc 
Exemplary Computing System tor platform . 

In an embodiment , the signaling rate of each NVLink 310 
Systems with multiple GPUs and CPUs are used in a 45 is 20 to 25 Gigabits / second and each PPU 300 includes six 

variety of industries as developers expose and leverage more NVLink 310 interfaces ( as shown in FIG . 5B , five NVLink 
parallelism in applications such as artificial intelligence 310 interfaces are included for each PPU 300 ) . Each 
computing . High - performance GPU - accelerated systems NVLink 310 provides a data transfer rate of 25 Gigabytes / 
with tens to many thousands of compute nodes are deployed second in each direction , with six links providing 300 
in data centers , research facilities , and supercomputers to 50 Gigabytes / second . The NVLinks 310 can be used exclu 
solve ever larger problems . As the number of processing sively for PPU - to - PPU communication as shown in FIG . 5B , 
devices within the high - performance systems increases , the or some combination of PPU - to - PPU and PPU - to - CPU , 
communication and data transfer mechanisms need to scale when the CPU 530 also includes one or more NVLink 310 
to support the increased bandwidth . interfaces . 

FIG . 5B is a conceptual diagram of a processing system 55 In an embodiment , the NVLink 310 allows direct load / 
500 implemented using the PPU 300 of FIG . 3 , in accor- store / atomic access from the CPU 530 to each PPU's 300 
dance with an embodiment . The exemplary system 565 may memory 304. In an embodiment , the NVLink 310 supports 
be configured to implement the method 100 shown in FIG . coherency operations , allowing data read from the memories 
1. The processing system 500 includes a CPU 530 , switch 304 to be stored in the cache hierarchy of the CPU 530 , 
510 , and multiple PPUs 300 each and respective memories 60 reducing cache access latency for the CPU 530. In an 
304. The NVLink 310 provides high - speed communication embodiment , the NVLink 310 includes support for Address 
links between each of the PPUS 300. Although a particular Translation Services ( ATS ) , allowing the PPU 300 to 
number of NVLink 310 and interconnect 302 connections directly access page tables within the CPU 530. One or more 
are illustrated in FIG . 5B , the number of connections to each of the NVLinks 310 may also be configured to operate in a 
PPU 300 and the CPU 530 may vary . The switch 510 65 low - power mode . 
interfaces between the interconnect 302 and the CPU 530 . FIG . 5C illustrates an exemplary system 565 in which the 
The PPUs 300 , memories 304 , and NVLinks 310 may be various architecture and / or functionality of the various pre 
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vious embodiments may be implemented . The exemplary receive commands that specify shader programs for process 
system 565 may be configured to implement the method 100 ing graphics data . Graphics data may be defined as a set of 
shown in FIG . 1 . primitives such as points , lines , triangles , quads , triangle 
As shown , a system 565 is provided including at least one strips , and the like . Typically , a primitive includes data that 

central processing unit 530 that is connected to a commu- 5 specifies a number of vertices for the primitive ( e.g. , in a 
nication bus 575. The communication bus 575 may be model - space coordinate system ) as well as attributes asso implemented using any suitable protocol , such as PCI ( Pe ciated with each vertex of the primitive . The PPU 300 can ripheral Component Interconnect ) , PCI - Express , AGP ( AC be configured to process the graphics primitives to generate celerated Graphics Port ) , HyperTransport , or any other bus a frame buffer ( e.g. , pixel data for each of the pixels of the or point - to - point communication protocol ( s ) . The system 10 display ) . 565 also includes a main memory 540. Control logic ( soft 
ware ) and data are stored in the main memory 540 which An application writes model data for a scene ( e.g. , a 
may take the form of random access memory ( RAM ) . collection of vertices and attributes ) to a memory such as a 

The system 565 also includes input devices 560 , the system memory or memory 304. The model data defines 
parallel processing system 525 , and display devices 545 , e.g. each of the objects that may be visible on a display . The 
a conventional CRT ( cathode ray tube ) , LCD ( liquid crystal application then makes an API call to the driver kernel that 
display ) , LED ( light emitting diode ) , plasma display or the requests the model data to be rendered and displayed . The 
like . User input may be received from the input devices 560 , driver kernel reads the model data and writes commands to 
e.g. , keyboard , mouse , touchpad , microphone , and the like . the one or more streams to perform operations to process the 
Each of the foregoing modules and / or devices may even be model data . The commands may reference different shader 
situated on a single semiconductor platform to form the 20 programs to be implemented on the SMs 440 of the PPU 300 
system 565. Alternately , the various modules may also be including one or more of a vertex shader , hull shader , 
situated separately or in various combinations of semicon- domain shader , geometry shader , and a pixel shader . For 
ductor platforms per the desires of the user . example , one or more of the SMs 440 may be configured to 

Further , the system 565 may be coupled to a network execute a vertex shader program that processes a number of 
( e.g. , a telecommunications network , local area network 25 vertices defined by the model data . In an embodiment , the 
( LAN ) , wireless network , wide area network ( WAN ) such as different SMs 440 may be configured to execute different the Internet , peer - to - peer network , cable network , or the shader programs concurrently . For example , a first subset of like ) through a network interface 535 for communication SMS 440 may be configured to execute a vertex shader purposes . program while a second subset of SMs 440 may be config The system 565 may also include a secondary storage ( not 
shown ) . The secondary storage 610 includes , for example , a 30 ured to execute a pixel shader program . The first subset of 
hard disk drive and / or a removable storage drive , represent SMS 440 processes vertex data to produce processed vertex 
ing a floppy disk drive , a magnetic tape drive , a compact data and writes the processed vertex data to the L2 cache 460 
disk drive , digital versatile disk ( DVD ) drive , recording and / or the memory 304. After the processed vertex data is 
device , universal serial bus ( USB ) flash memory . The rasterized ( e.g. , transformed from three - dimensional data 
removable storage drive reads from and / or writes to a 35 into two - dimensional data in screen space ) to produce 
removable storage unit in a well - known manner . fragment data , the second subset of SMS 440 executes a 

Computer programs , or computer control logic algo- pixel shader to produce processed fragment data , which is 
rithms , may be stored in the main memory 540 and / or the then blended with other processed fragment data and written 
secondary storage . Such computer programs , when to the frame buffer in memory 304. The vertex shader 
executed , enable the system 565 to perform various func- 40 program and pixel shader program may execute concur 
tions . The memory 540 , the storage , and / or any other storage rently , processing different data from the same scene in a 
are possible examples of computer - readable media . pipelined fashion until all of the model data for the scene has 

The architecture and / or functionality of the various pre been rendered to the frame buffer . Then , the contents of the 
vious figures may be implemented in the context of a general frame buffer are transmitted to a display controller for 
computer system , a circuit board system , a game console 45 display on a display device . 
system dedicated for entertainment purposes , an application- FIG . 6 is a conceptual diagram of a graphics processing 
specific system , and / or any other desired system . For pipeline 600 implemented by the PPU 300 of FIG . 3 , in 
example , the system 565 may take the form of a desktop accordance with an embodiment . The graphics processing 
computer , a laptop computer , a tablet computer , servers , pipeline 600 is an abstract flow diagram of the processing 
supercomputers , a smart - phone ( e.g. , a wireless , hand - held 50 steps implemented to generate 2D computer - generated 
device ) , personal digital assistant ( PDA ) , a digital camera , a images from 3D geometry data . As is well - known , pipeline 
vehicle , a head mounted display , a hand - held electronic architectures may perform long latency operations more 
device , a mobile phone device , a television , workstation , efficiently by splitting up the operation into a plurality of 
game consoles , embedded system , and / or any other type of stages , where the output of each stage is coupled to the input 
logic . 55 of the next successive stage . Thus , the graphics processing 

While various embodiments have been described above , pipeline 600 receives input data 601 that is transmitted from 
it should be understood that they have been presented by one stage to the next stage of the graphics processing 
way of example only , and not limitation . Thus , the breadth pipeline 600 to generate output data 602. In an embodiment , 
and scope of a preferred embodiment should not be limited the graphics processing pipeline 600 may represent a graph 
by any of the above - described exemplary embodiments , but 60 ics processing pipeline defined by the OpenGL® API . As an 
should be defined only in accordance with the following option , the graphics processing pipeline 600 may be imple 
claims and their equivalents . mented in the context of the functionality and architecture of 

the previous Figures and / or any subsequent Figure ( s ) . 
Graphics Processing Pipeline As shown in FIG . 6 , the graphics processing pipeline 600 

65 comprises a pipeline architecture that includes a number of 
In an embodiment , the PPU 300 comprises a graphics stages . The stages include , but are not limited to , a data 

processing unit ( GPU ) . The PPU 300 is configured to assembly stage 610 , a vertex shading stage 620 , a primitive 
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assembly stage 630 , a geometry shading stage 640 , a view- 670 , and / or hardware / software associated therewith , may 
port scale , cull , and clip ( VSCC ) stage 650 , a rasterization sequentially perform processing operations . Once the 
stage 660 , a fragment shading stage 670 , and a raster sequential processing operations are complete , in an 
operations stage 680. In an embodiment , the input data 601 embodiment , the viewport SCC stage 650 may utilize the 
comprises commands that configure the processing units to 5 data . In an embodiment , primitive data processed by one or 
implement the stages of the graphics processing pipeline 600 more of the stages in the graphics processing pipeline 600 
and geometric primitives ( e.g. , points , lines , triangles , may be written to a cache ( e.g. L1 cache , a vertex cache , 
quads , triangle strips or fans , etc. ) to be processed by the etc. ) . In this case , in an embodiment , the viewport SCC stage 
stages . The output data 602 may comprise pixel data ( e.g. , 650 may access the data in the cache . In an embodiment , the 
color data ) that is copied into a frame buffer or other type of 10 viewport SCC stage 650 and the rasterization stage 660 are 
surface data structure in a memory . implemented as fixed function circuitry . 

The data assembly stage 610 receives the input data 601 The viewport SCC stage 650 performs viewport scaling , 
that specifies vertex data for high - order surfaces , primitives , culling , and clipping of the geometric primitives . Each 
or the like . The data assembly stage 610 collects the vertex surface being rendered to is associated with an abstract 
data in a temporary storage or queue , such as by receiving 15 camera position . The camera position represents a location 
a command from the host processor that includes a pointer of a viewer looking at the scene and defines a viewing 
to a buffer in memory and reading the vertex data from the frustum that encloses the objects of the scene . The viewing 
buffer . The vertex data is then transmitted to the vertex frustum may include a viewing plane , a rear plane , and four 
shading stage 620 for processing . clipping planes . Any geometric primitive entirely outside of 
The vertex shading stage 620 processes vertex data by 20 the viewing frustum may be culled ( e.g. , discarded ) because 

performing a set of operations ( e.g. , a vertex shader or a the geometric primitive will not contribute to the final 
program ) once for each of the vertices . Vertices may be , e.g. , rendered scene . Any geometric primitive that is partially 
specified as a 4 - coordinate vector ( e.g. , < x , y , z , w > ) inside the viewing frustum and partially outside the viewing 
associated with one or more vertex attributes ( e.g. , color , frustum may be clipped ( e.g. , transformed into a new 
texture coordinates , surface normal , etc. ) . The vertex shad- 25 geometric primitive that is enclosed within the viewing 
ing stage 620 may manipulate individual vertex attributes frustum . Furthermore , geometric primitives may each be 
such as position , color , texture coordinates , and the like . In scaled based on a depth of the viewing frustum . All poten 
other words , the vertex shading stage 620 performs opera- tially visible geometric primitives are then transmitted to the 
tions on the vertex coordinates or other vertex attributes rasterization stage 660 . 
associated with a vertex . Such operations commonly includ- 30 The rasterization stage 660 converts the 3D geometric 
ing lighting operations ( e.g. , modifying color attributes for primitives into 2D fragments ( e.g. capable of being utilized 
a vertex ) and transformation operations ( e.g. , modifying the for display , etc. ) . The rasterization stage 660 may be con 
coordinate space for a vertex ) . For example , vertices may be figured to utilize the vertices of the geometric primitives to 
specified using coordinates in an object - coordinate space , setup a set of plane equations from which various attributes 
which are transformed by multiplying the coordinates by a 35 can be interpolated . The rasterization stage 660 may also 
matrix that translates the coordinates from the object - coor- compute a coverage mask for a plurality of pixels that 
dinate space into a world space or a normalized - device- indicates whether one or more sample locations for the pixel 
coordinate ( NCD ) space . The vertex shading stage 620 intercept the geometric primitive . In an embodiment , z - test 
generates transformed vertex data that is transmitted to the ing may also be performed to determine if the geometric 
primitive assembly stage 630 . 40 primitive is occluded by other geometric primitives that 
The primitive assembly stage 630 collects vertices output have already been rasterized . The rasterization stage 660 

by the vertex shading stage 620 and groups the vertices into generates fragment data ( e.g. , interpolated vertex attributes 
geometric primitives for processing by the geometry shading associated with a particular sample location for each covered 
stage 640. For example , the primitive assembly stage 630 pixel ) that are transmitted to the fragment shading stage 670 . 
may be configured to group every three consecutive vertices 45 The fragment shading stage 670 processes fragment data 
as a geometric primitive ( e.g. , a triangle ) for transmission to by performing a set of operations ( e.g. , a fragment shader or 
the geometry shading stage 640. In some embodiments , a program ) on each of the fragments . The fragment shading 
specific vertices may be reused for consecutive geometric stage 670 may generate pixel data ( e.g. , color values ) for the 
primitives ( e.g. , two consecutive triangles in a triangle strip fragment such as by performing lighting operations or 
may share two vertices ) . The primitive assembly stage 630 50 sampling texture maps using interpolated texture coordi 
transmits geometric primitives ( e.g. , a collection of associ- nates for the fragment . The fragment shading stage 670 
ated vertices ) to the geometry shading stage 640 . generates pixel data that is transmitted to the raster opera 
The geometry shading stage 640 processes geometric tions stage 680 . 

primitives by performing a set of operations ( e.g. , a geom- The raster operations stage 680 may perform various 
etry shader or program ) on the geometric primitives . Tes- 55 operations on the pixel data such as performing alpha tests , 
sellation operations may generate one or more geometric stencil tests , and blending the pixel data with other pixel data 
primitives from each geometric primitive . In other words , corresponding to other fragments associated with the pixel . 
the geometry shading stage 640 may subdivide each geo- When the raster operations stage 680 has finished processing 
metric primitive into a finer mesh of two or more geometric the pixel data ( e.g. , the output data 602 ) , the pixel data may 
primitives for processing by the rest of the graphics pro- 60 be written to a render target such as a frame buffer , a color 
cessing pipeline 600. The geometry shading stage 640 buffer , or the like . 
transmits geometric primitives to the viewport SCC stage It will be appreciated that one or more additional stages 
650 . may be included in the graphics processing pipeline 600 in 

In an embodiment , the graphics processing pipeline 600 addition to or in lieu of one or more of the stages described 
may operate within a streaming multiprocessor and the 65 above . Various implementations of the abstract graphics 
vertex shading stage 620 , the primitive assembly stage 630 , processing pipeline may implement different stages . Fur 
the geometry shading stage 640 , the fragment shading stage thermore , one or more of the stages described above may be 
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excluded from the graphics processing pipeline in some for it get smarter and more efficient at identifying basic 
embodiments ( such as the geometry shading stage 640 ) . objects , occluded objects , etc. , while also assigning context 
Other types of graphics processing pipelines are contem- to objects . 
plated as being within the scope of the present disclosure . At the simplest level , neurons in the human brain look at 
Furthermore , any of the stages of the graphics processing 5 various inputs that are received , importance levels are 
pipeline 600 may be implemented by one or more dedicated assigned to each of these inputs , and output is passed on to 
hardware units within a graphics processor such as PPU 300 . other neurons to act upon . An artificial neuron or perceptron 
Other stages of the graphics processing pipeline 600 may be is the most basic model of a neural network . In one example , 
implemented by programmable hardware units such as the a perceptron may receive one or more inputs that represent 

10 various features of an object that the perceptron is being SM 440 of the PPU 300 . 
The graphics processing pipeline 600 may be imple trained to recognize and classify , and each of these features 

mented via an application executed by a host processor , such is assigned a certain weight based on the importance of that 
as a CPU . In an embodiment , a device driver may implement feature in defining the shape of an object . 

A deep neural network ( DNN ) model includes multiple an application programming interface ( API ) that defines 15 layers of many connected nodes ( e.g. , perceptrons , Boltz various functions that can be utilized by an application in mann machines , radial basis functions , convolutional layers , order to generate graphical data for display . The device etc. ) that can be trained with enormous amounts of input driver is a software program that includes a plurality of data to quickly solve complex problems with high accuracy . 
instructions that control the operation of the PPU 300. The In one example , a first layer of the DNN model breaks down 
API provides an abstraction for a programmer that lets a 20 an input image of an automobile into various sections and 
programmer utilize specialized graphics hardware , such as looks for basic patterns such as lines and angles . The second 
the PPU 300 , to generate the graphical data without requir- layer assembles the lines to look for higher level patterns 
ing the programmer to utilize the specific instruction set for such as ls , windshields , and mirrors . The next layer 
the PPU 300. The application may include an API call that identifies the type of vehicle , and the final few layers 
is routed to the device driver for the PPU 300. The device 25 generate a label for the input image , identifying the model 
driver interprets the API call and performs various opera- of a specific automobile brand . 
tions to respond to the API call . In some instances , the Once the DNN is trained , the DNN can be deployed and 
device driver may perform operations by executing instruc- used to identify and classify objects or patterns in a process 
tions on the CPU . In other instances , the device driver may known as inference . Examples of inference ( the process 
perform operations , at least in part , by launching operations 30 through which a DNN extracts useful information from a 
on the PPU 300 utilizing an input / output interface between given input ) include identifying handwritten numbers on 
the CPU and the PPU 300. In an embodiment , the device checks deposited into ATM machines , identifying images of 
driver is configured to implement the graphics processing friends in photos , delivering movie recommendations to 
pipeline 600 utilizing the hardware of the PPU 300 . over fifty million users , identifying and classifying different 

Various programs may be executed within the PPU 300 in 35 types of automobiles , pedestrians , and road hazards in 
order to implement the various stages of the graphics driverless cars , or translating human speech in real - time . 
processing pipeline 600. For example , the device driver may During training , data flows through the DNN in a forward 
launch a kernel on the PPU 300 to perform the vertex propagation phase until a prediction is produced that indi 
shading stage 620 on one SM 440 ( or multiple SMs 440 ) . cates a label corresponding to the input . If the neural 
The device driver ( or the initial kernel executed by the PPU 40 network does not correctly label the input , then errors 
400 ) may also launch other kernels on the PPU 400 to between the correct label and the predicted label are ana 
perform other stages of the graphics processing pipeline lyzed , and the weights are adjusted for each feature during 
600 , such as the geometry shading stage 640 and the a backward propagation phase until the DNN correctly 
fragment shading stage 670. In addition , some of the stages labels the input and other inputs in a training dataset . 
of the graphics processing pipeline 600 may be implemented 45 Training complex neural networks requires massive 
on fixed unit hardware such as a rasterizer or a data amounts of parallel computing performance , including float 
assembler implemented within the PPU 400. It will be ing - point multiplications and additions that are supported by 
appreciated that results from one kernel may be processed the PPU 300. Inferencing is less compute - intensive than 
by one or more intervening fixed function hardware units training , being a latency - sensitive process where a trained 
before being processed by a subsequent kernel on an SM 50 neural network is applied to new inputs it has not seen before 
440 . to classify images , translate speech , and generally infer new 

information . 
Machine Learning Neural networks rely heavily on matrix math operations , 

and complex multi - layered networks require tremendous 
Deep neural networks ( DNNs ) developed on processors , 55 amounts of floating - point performance and bandwidth for 

such as the PPU 300 have been used for diverse use cases , both efficiency and speed . With thousands of processing 
from self - driving cars to faster drug development , from cores , optimized for matrix math operations , and delivering 
automatic image captioning in online image databases to tens to hundreds of TFLOPS of performance , the PPU 300 
smart real - time language translation in video chat applica- is a computing platform capable of delivering performance 
tions . Deep learning is a technique that models the neural 60 required for deep neural network - based artificial intelligence 
learning process of the human brain , continually learning , and machine learning applications . 
continually getting smarter , and delivering more accurate 
results more quickly over time . A child is initially taught by Estimating Depth from Monocular Image Sensor 
an adult to correctly identify and classify various shapes , Data 
eventually being able to identify shapes without any coach- 65 
ing . Similarly , a deep learning or neural learning system It will be appreciated that the system 200 receives an 
needs to be trained in object recognition and classification image frame 202 and extracts features 204 for the image 



US 10,984,545 B2 
27 28 

frame 202 using the layers of the first neural network 210 . the video stream utilized to update the measured DPV 710 
The system 200 could be utilized to generate a DPV for a for a particular reference frame . 
sequence of image frames ( e.g. , a video stream ) captured by For a given sliding window 704 associated with time t , the 
a monocular image sensor 230 , but the system 200 is not reference frame 702-1 and at least one source frame within 
designed such that the DPV for a reference frame is based 5 the sliding window 704 are processed by instances of the 
on , at least in part , the features 204 extracted by the first first neural network 210 , D - Net , to extract corresponding 
neural network 210 for neighboring frames in the sequence features 204 for each image frame . Each instance of the first 
of image frames . Consequently , as the image frame 202 neural network 210 can share the attributes ( e.g. , have the 
changes from frame to frame , there is nothing in the design same weights / bias values ) of the other instances of the first 
of the system 200 that guides the output of features 204 in 10 neural network 210. In other words , the attributes of each instance of the first neural network 210 can be stored in a a sequence of image frames to be consistent from frame to shared memory accessible by all instances of the first neural frame . network 210 . However , the system 200 can be adapted , when process For example , as depicted in FIG . 7 , a reference frame ing a video stream , to treat the features extracted at time t as 15 702-1 , centered in the sliding window 704 , can be processed hidden state that can be updated as subsequent image frames by a first instance of the first neural network 210-1 to extract are captured in the sequence of image frames . More spe features 204-1 from the reference frame 702-1 , and each of 
cifically , a measured DPV associated with a sliding window the source frames in the sliding window 704 is processed by 
can be updated as new observations of the scene are captured another instance of the first neural network 210 to extract 
by the image sensor 230 , especially when the frustum 220 20 corresponding features 204 for the source frame . More 
defined for one image frame overlaps , at least partially , with specifically , a first source frame 702-2 is processed by a 
a frustum 220 defined for one or more adjacent image frames second instance of the first neural network 210-2 to extract 
within the sliding window . In addition , if the camera motion features 204-2 for the first source frame 702-2 , and a second 
can be tracked , a measured DPV for a next frame can be source frame 702-3 is processed by a third instance of the 
predicted based on the current state of the measured DPV . 25 first neural network 210-3 to extract features 204-3 for the 
Consequently , a Bayesian filtering scheme can be imple- second source frame 702-3 . 
mented to update the measured DPV over time to increase In some embodiments , at each discrete time , the sliding 
the accuracy of the measured DPV . window 704 is advanced by one image frame in the 

FIG . 7 is a conceptual diagram illustrating a system 700 sequence of image frames . In such embodiments , the fea 
that utilizes instances of the neural network model 210 to 30 tures 204 for many of the image frames in the sliding 
generate a measured DPV 710 for a reference frame 702-1 window 704 have been extracted during previous time 
associated with a sliding window 704 , in accordance with periods , being stored temporarily in a memory ( e.g. , 
some embodiments . A video stream is received by the memory 304 ) , and only a single instance of the first neural 
system 700 as input , where the video stream includes one or network 210 is required to extract features 204 for the new 
more image frames in a sequence of image frames . Each 35 image frame introduced to the sliding window 704 . 
image frame can be captured by the monocular image sensor Because the source frames are captured by the image 
230 and stored in a memory , such as memory 304 . sensor 230 close in time with capturing the reference frame 
A sliding window 704 is defined that includes a reference 702-1 , each of the source frames is likely to capture at least 

frame 702-1 and a number of source frames ( e.g. , 702-2 , a portion of the same scene as the reference frame 702-1 . In 
702-3 , etc. ) immediately adjacent to the reference frame 40 other words , at least some of the voxels 234 included in a 
702-1 . In an embodiment , the reference frame 702-1 is frustum 220 for a source frame are likely to overlap voxels 
centered in the sliding window 704. In other embodiments , 234 in a frustum 220 for the reference frame 702-1 . There 
the reference frame 702-1 can be the newest image frame fore , there should be some consistency between the prob 
entering the sliding window 704. In an embodiment , the ability values of certain voxels predicted for the source 
sliding window 704 includes the reference frame 702-1 , a 45 frames with probability values of overlapping voxels pre 
first source frame 702-2 immediately preceding the refer- dicted for the reference frame 702-1 . 
ence frame 702-1 , and a second source frame 702-3 imme- FIG . 8 is a conceptual diagram of an operating environ 
diately following the reference frame 702-1 . In other ment 800 of the system 700 configured to capture a sequence 
embodiments , the sliding window 704 may be expanded to of image frames 702 utilizing a monocular image sensor 
include additional source frames in the sequence of image 50 230 , in accordance with some embodiments . As depicted in 
frames , such as two source frames immediately preceding FIG . 8 , the image sensor 230 can be included in an apparatus 
the reference frame 702-1 and two source frames immedi- 802 , such as a digital camera , mobile phone , multi - axis 
ately following the reference frame 702-1 . robot , autonomous vehicle , wearable device ( e.g. , watch , 

In some embodiments , the sequence of image frames can VR display , etc. ) , or the like . In some embodiments , the 
be captured at , e.g. , 30 frames per second . The size of the 55 image sensor 230 is included in a sensor package that 
sliding window 704 can include , e.g. , 21 frames . However , includes a substrate such as a printed circuit board , a means 
a number of frames in the sliding window 704 can be for communication with a memory or host processor ( e.g. , a 
ignored . For example , the reference frame 702-1 can be wireless transceiver or a wired communication controller 
centered in the sliding window and denoted as frame N , and such as a serial port controller or USB controller ) , and 
the source frames can be defined as frame N - 2At , frame 60 optical components such as a lens , mirrors , or shutter device . 
N - At , frame N + At , and frame N + 2At where At = 5 . Conse- In an embodiment , the apparatus 802 includes a positional 
quently , the source frames may not be immediately adjacent sensing subsystem 810 that is used to detect the position 
to the reference frame 702-1 in the video stream captured at and / or orientation of the apparatus 802 relative to a coordi 
30 fps ; however , all image frames in the sliding window 704 nate system 830. The positional sensing subsystem 810 can 
other than the reference frame 702-1 and the four source 65 include an inertial measurement unit ( IMU ) including 
frames are ignored . The effect of such embodiments is that single - axis or multi - axis gyroscopes , accelerometers , mag 
the sliding window 704 reduces the effective frame rate of netometers , or any other type of sensor that is able to track 
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a position and / or orientation of an object . It will be appre- of the image sensor as measured by the positional sensing 
ciated that the apparatus 802 is not static and can move subsystem 810. In some embodiments , the camera param 
relative to the coordinate system 830 along a trajectory 820 . eters can also include configuration information , such as a 
The image sensor 230 captures an image frame at time t at lens focal length , zoom parameters , and the like that can be 
a first position along the trajectory 820. The image frame can 5 used to calculate a difference between the corresponding 
be processed by the first neural network model 210 to extract frustum 220 defined for each of the source frames and the 
features 204 associated with a view frustum 220-1 defined reference frame 702-1 . 
within the three - dimensional space . The disclosed techniques require determination of relative At time t - 1 prior to time t , the image sensor 230 captures camera pose information 706 ( e.g. , relative camera poses an image frame at a second position along the trajectory 820. 10 ST ) between two frames between a reference frame 702-1 The image fame can be processed by an instance of the first and a source frame — to bootstrap the computation of the neural network 210 to extract features 204 associated with a 
second view frustum 220-2 . It will be appreciated that at measured DPV 710 via the warp function 712. Several 
least some of the voxels in the two corresponding frustums plausible options exist and have been evaluated for purposes 
220 do not overlap in the space defined by the coordinate of this disclosure . In many applications , such as autonomous 
system 830. However , given the proximity of the position driving and AR , initial camera poses for image sensor 230 
and the similarity of the orientation of the image sensor 230 may be provided by additional sensors such as a global 
between the first position and the second position along the positioning sensor ( GPS ) , an odometer , or the IMU of the 
trajectory 820 , it is highly likely that at least a portion of the positional sensing subsystem 810 , for example . Alterna 
frustum 220-1 overlaps with a portion of the frustum 220-2 . 20 tively , monocular visual odometry techniques , such as direct 

For example , a voxel 841 of the frustum 220-1 associated sparse odometry ( DSO ) , can be implemented to obtain the 
with the image frame captured at time t overlaps with a initial camera poses for image sensor 230 , either instead of 
voxel 851 and a voxel 852 of the frustum 220-2 associated or in addition to the above described IMU , GPS and / or 
with the image frame captured at time t - 1 . Consequently , an odometer - based position sensing modalities . An exemplary 
object at a position in space relative to the coordinate system 25 DSO technique is described in J. Engel , et al . , “ Direct Sparse 
830 in the image frame captured at time t and overlapping Odometry , ” in IEEE Transactions on Pattern Analysis and 
the voxel 841 , where the object is stationary between time Machine Intelligence ( TPAMI ) , volume 40 , pages 611-625 
t - 1 and time t , is likely to overlap at least one of voxel 851 ( 2018 ) , which is incorporated by reference herein in its 
or voxel 852 in the image frame captured at time t - 1 . entirety . 

It will be appreciated that the operating environment 800 30 The warp function 712 generates a warped version of the 
is shown and described relative to a two - dimensional depic- features 708 for a corresponding source frame by sampling 
tion of the operating environment 800 for ease of illustra- the features 204 for the source frame based on the relative 
tion . However , the operating environment 800 exists in a camera pose information 706. This technique can be referred 
three - dimensional space and , therefore , the concept of the to as grid sampling . In an embodiment , the warp function 
frustums 220 , the trajectory 820 , and the coordinate system 35 712 samples the values in the feature maps 204 for a source 
830 as depicted in FIG . 8 can be extended to the three- frame to predict probability values associated with a frustum 
dimensional space . In other words , the position of the image 220-2 that matches the frustum 220-1 for the features 204-1 
sensor 230 can be defined using , e.g. , a three - coordinate of the reference frame 702-1 . For example , for each voxel of 
vector such as an x - coordinate , a y - coordinate , and a z - co- the frustum 220-1 associated with the features 204-1 for the 
ordinate relative to the origin of the coordinate system 830. 40 reference frame 702-1 , the warp function 712 can determine 
Similarly , the orientation of the image sensor 230 can be whether that voxel overlaps one or more voxels of the 
defined using , e.g. , a three - coordinate vector such as an frustum 220-2 associated with the features 204-2 for the 
X - axis rotation , a y - axis rotation , and a Z - axis rotation . The source frame 702-2 . 
extents of the voxels 234 of the frustums 220 can then be In an embodiment , the warp function 712 can sample the 
determined by projecting rays associated with pixels or 45 probability value for a particular voxel of the frustum 220-2 
subsets of pixels into the three - dimensional space and deter- for the source frame that is associated with the largest 
mining the position of vertices for each voxel 234 by overlapping volume with a corresponding voxel for the 
determining the intersection of cutting planes 236 with the frustum 220-1 for the reference frame 702-1 . Alternatively , 
rays . the warp function 712 can sample the probability value for 

Referring back to FIG . 7 , rather than relying on the 50 a particular voxel of the frustum 220-2 for the source frame 
features 204-1 extracted by the neural network 210 for the that is associated with the closest overlapping voxel for the 
reference frame 702-1 alone , the system 700 combines frustum 220-1 for the source frame 702-1 . In another 
multiple sets of features 204 extracted by the first neural embodiment , the warp function 712 can sample multiple 
network 210 for multiple image frames within the sliding probability values for two or more voxels for the frustum 
window 704 to generate a measured DPV 710 for the 55 220-2 for the source frame that overlap with the correspond 
reference frame 702-1 . The measured DPV 710 associated ing voxel for the frustum 220-1 for the reference frame 
with a multi - frame sliding window 704 is more temporally 702-1 . 
stable than a DPV based on the features 204-1 of the In an embodiment , the features 204-1 for the reference 
reference frame 702-1 alone . frame 702-1 and the warped versions of the features 708-1 

In an embodiment , each set of features 204 extracted by 60 for each of the source frames in the sliding window 704 are 
an instance of the neural network 210 from a source frame processed by a softmax function 714 , which outputs the 
is modified by a warp function 712 based on relative camera measured DPV 710. More specifically , a cost volume is 
pose information 706 received for the source frame . As used calculated by summing a difference between the features 
herein , relative camera pose information 706 refers to a 204-1 for the reference frame 702-1 and the warped version 
difference between camera parameters for the source frame 65 of the features 708 for each of the source frames , as follows : 
and camera parameters for the reference frame 702-1 . The 
camera parameters can include a position and / or orientation L ( d [ // ) = EXEN , K = ( I . ) - warp ( { { Ix ) ; d , dTxt ) ll , ( Eq . 4 ) 
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where f ( ) is a feature extractor defined by the first neural over time to reduce uncertainty ( e.g. , increase the confidence 
network 210 ( e.g. , the function that extracts the features 204 level associated with each depth estimate ) . This integration 
from an image frame 202 ) , 8Tkt is the relative camera pose can be naturally implemented as Bayesian filtering . Defining 
information 706 from source frame It to reference frame I , di ( e.g. , the depth at frame I ) as the hidden state of the 
and warp ( ) is the warp function 712 that operates to warp 5 system 700 , a belief volume is defined as p ( d 111 : 1 ) , which is 
the image features from source frame Iz to reference frame the conditional distribution of the state given all previous 
It . The measured DPV 710 can then be represented as : frames in the sequence of image frames . In other words , the 

p ( d : 11 . ) = softmax ( L ( d111 . ) ) , ( Eq . 5 ) system 700 has a memory over the T frames from frame I , 
Examination of Equation 5 reveals that the softmax to I. Simple Bayesian filtering can be implemented over two 

function 714 operates along the depth dimension of the cost 10 steps . 
volume L ( d , 11 , ) to normalize the probability values of the In a prediction step , a predicted DPV for the next state 
cost volume such that the sum of the elements ( e.g. , prob de + 1 can be calculated based on the current state . More 
ability values ) associated with a particular pixel or subset of specifically , the measured DPV 710 at timet is warped based 
pixels sum to one and exist within the range of [ 0,1 ] . The on the relative camera pose information ST . at time t + 1 
distribution function utilized by the softmax function 714 is 15 compared to time t , as follows : 
typically an exponential function , such as Equation 6 , but p ( d , + 1 11 : z ) = warp ( p ( d , 111.c ) , 8T4,1 + 1 ) , ( Eq . 7 ) 
can be other types of distribution functions that map a range 
of inputs to the range of values between [ 0,1 ] . where the warp operator is implemented as a 3D grid 

sampling of the current measured DPV 710 for the reference 
20 frame 702-1 at time t . The warped version of the measured 

eBzi ( Eq . 6 ) DPV 710 can be referred to as a predicted DPV . 
0 ( z ) = In an update step , a measured DPV 710 for the next frame 

I + 1 at time t + 1 can be estimated by the system 700 using 
instances of the neural network 210 to extract features 204 

25 for the image frames within the sliding window at time t + 1 . 
FIG . 9 illustrates a sliding window 704 advancing over a The hidden state p ( dz + 1 ! 11 : + 1 ) is then updated based on this 

time period from time t to time t + 1 , in accordance with some estimate of the measured DPV 710 at time t + 1 and the 
embodiments . The sliding window 704-1 covers five frames predicted DPV , as follows : 
in the sequence of image frames at time t . The frame at the p ( dz + 1 11 : + 1 ) = P ( d : +1 11 : ) P ( d +1 11 : + 1 ) , ( Eq . 8 ) center of the sliding window 704-1 , Frame N 910 , is the 30 
reference frame 702-1 . In addition , Frame N - 2 912 , Frame The result of Equation 8 can be referred to as the updated 
N - 1 914 , Frame N + 1 916 , and Frame N + 2 918 are source DPV . It will be appreciated that the result of Equations 7 and 
frames . A measured DPV 710 can be computed for a 8 are always normalized such that the elements across each 
reference frame 702-1 ( e.g. , Frame N 910 ) based on the channel of the belief volume sum to one in order to represent 
features 204 extracted by the first neural network 210 for 35 probabilities . Equation 8 can be referred to as integration by 
each of the image frames in the sliding window 704-1 . applying Bayesian filtering with no damping . 

The sliding window 704-1 advances one frame between FIG . 10 illustrates a system 1000 for integrating measured 
time t and time t + 1 to include five frames in the sequence of DPVs 710 over time to reduce uncertainty , in accordance 
image frames within the sliding window 704-2 at time t + 1 . with an embodiment . In a first step , a warp function 1012 
The image frame at the center of the sliding window 704-2 40 generates the predicted DPV 1010 from a measured DPV 
( e.g. , Frame N 920 ) is the reference frame 702-1 at time t + 1 710-1 for a reference frame 702-1 in a sliding window 704 
and corresponds to Frame N + 1 916 in sliding window 704-1 . generated by the system 700 at a time t . The warp function 
In addition , Frame N - 2 922 , Frame N - 1 924 , and Frame 1012 is similar to the warp function 712. More specifically , 
N + 1 926 in sliding window 704-2 are source frames and the measured DPV 710-1 is warped to generate a predicted 
correspond to Frame N - 1 914 , Frame N 910 , and Frame 45 DPV 1010 for time t + 1 based on relative camera pose 
N + 2 918 in sliding window 704-1 , respectively . A new information 1006 . 
frame , Frame N + 2 928 , in the sequence of image frames 702 In a second step , the predicted DPV 1010 is combined 
enters the sliding window 704-2 at time t + 1 . A measured with a measured DPV 710-2 for a reference frame 702-1 in 
DPV 710 can be computed for a reference frame 702-1 ( e.g. , a sliding window 704 generated by the system 700 at a time 
Frame N 920 ) based on the features 204 extracted by the first 50 t + 1 . The combination operation is performed by multiplying 
neural network 210 for each of the frames in the sliding each element of the predicted DPV 1010 by a corresponding 
window 704-2 . element of the measured DPV 710-2 and then normalizing 

It will be appreciated that the features 204 for frames 922 , the result . 
924 , 920 , and 926 were extracted , or had already been One problem with directly applying Bayesian filtering is 
extracted at times prior to time t , when the measured DPV 55 that both correct and incorrect information are propagated 
710 for Frame N 910 was generated at time t . These features over time . Thus , artifacts such as specular highlights in one 
204 can be stored in a memory and reused at time t + 1 when frame can propagate error introduced by the measured DPV 
a measured DPV 710 for frame N 920 is generated by the 710 over multiple frames . In another example , occlusions or 
system 700 at time t + 1 . Consequently , at time t + 1 , only the dis - occlusions could cause the estimated depth at object 
Frame N + 2 928 is processed by an instance of the neural 60 boundaries to change abruptly from frame to frame . One 
network 210 to generate corresponding features 204 for solution is to utilize damping to reduce the weight of the 
Frame N + 2 928 . predicted DPV 1010 to reduce the propagation of incorrect 

information from previous frames . 
Bayesian Filtering Implementations FIG . 11 illustrates a system 1100 for integrating measured 

65 DPVs 710 over time to reduce uncertainty utilizing a global 
In general , one goal when processing a video stream is to damping technique , in accordance with another embodi 

integrate the local estimation of a depth probability volume ment . The system 1100 is similar to system 1000 except that 
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the combination operation utilizes a global damping param- matrix W ,, and the second neural network 1210 is equivalent 
eter ( e.g. , a = 0.8 ) to damp the effects of the predicted DPV to the multiplication of the gain and measurement matrices 
1010 on the output of the updated DPV 1040. More spe- KV . 
cifically , by defining E ( d = -log p ( d ) , Equation 8 can be In an embodiment , the second neural network 1210 is a 
rewritten as : 5 CNN that includes a number of stages , each stage compris 

ing one or more layers . An input to the second neural E ( d : +1 \ 1 : 2 + 1 ) = E ( dz + 1 \ / 1 : 1 ) + E ( dz + 1 / 4 + 1 ) ( Eq . 9 ) network 1210 is a four dimensional hypervolume that 
where the first term on the right side of the Equation is includes one channel comprising the residual DPV 1220 and 
related to the predicted DPV 1010 and the second term on three additional channels representing an expanded refer 
the right side of the Equation is related to the measured DPV 10 ence frame . More specifically , each channel representing the 710-2 . Global damping can then be applied to Equation 9 by expanded reference frame includes information for par 
multiplying the first term by the global damping parameter , ticular color channel of the reference frame ( e.g. , red , green , 
as follows : or blue channels ) projected into a 3D volume matching the 

dimensions of the measured DPV for the reference frame . In E ( d : +1 11 : x + 1 ) = 2.E ( d4 + 1 11 : 4 ) + E ( d4 + 1 14 + 1 ) , ( Eq . 10 ) 15 other words , a 2D image representing the color information However , while global damping helps reduce the error from the reference frame for a particular color channel is 
from incorrect values in the predicted DPV 1010 due to , e.g. , replicated n times ( e.g. , n equal to 64 ) to create a 3D volume 
occlusions or dis - occlusions , global damping also prevents that includes information for a particular color channel some correct depth information from propagating to the hidden state for the next frame . Therefore , a solution 20 replicated at each depth . The combination of the 3D volumes 
referred to as adaptive damping is proposed . for the three color channels of the image along with the 

residual DPV 1220 are included in the four channels of the FIG . 12 illustrates a system 1200 for integrating measured 
DPVs 710 over time to reduce uncertainty utilizing an 4D hypervolume . 
adaptive damping technique , in accordance with yet another In an embodiment , a first stage of the CNN includes a first 
embodiment . In contrast with the systems 1000 and 1100 , 25 convolution layer that receives a 4 channel input and applies 
the system 1200 does not combine the predicted DPV 1010 a 3D convolution operation utilizing a 3x3 convolution 
and the measured DPV 710-2 directly , but instead the system kernel to generate a 32 channel output . As used herein , a 3D 
1200 calculates a difference between the predicted DPV convolution operation is different from a 2D convolution 
1010 and the measured DPV 710-2 to generate a residual operation because the elements of a particular channel of the 
DPV 1220. The residual DPV 1220 highlights those portions output can comprise weighted portions of multiple channels 
of the predicted DPV 1010 that may represent erroneous of the input . The first convolution layer can be followed by 
information , such as those probabilities for voxels near an activation function , such as a ReLU , and a second 
objects that may have moved from the frame at time t to the convolution layer . The second convolution layer receives the 
frame at time t + 1 . 32 channel output of the ReLU following the first convo 

In an embodiment , the residual DPV 1220 is provided as lution layer and applies a 3D convolution operation utilizing 
input to second neural network 1210. The second neural a 3x3 convolution kernel to generate a 32 channel output 
network 1210 is configured to process the residual DPV ( e.g. , the same as the input ) . The second convolution layer 1220 and generate a residual gain volume 1230 that includes can also be followed by an activation function , such as a estimated per - pixel damping gains that are applied to the ReLU . 
predicted DPV 1010 to generate the updated DPV 1240 , in In one embodiment , the dimensions of the input to the accordance with the following equation : second neural network are H / 4xW / 4x64x4 and the dimen 

Eld : +1 11 : 2 + 1 ) = E ( d : +1 11 : 0 ) + g ( AE1 + 1 , 11 : 0 ) , ( Eq . 11 ) sions of the output of the first stage are H / 4xW / 4x64x32 . 
The first stage of the CNN is followed by a second stage of 

where ?? , refers to the residual DPV 1220 and go 45 the CNN that includes a number of blocks . Each block 
refers to a CNN implemented by the second neural network includes a first convolution layer , followed by an activation 1210. In contrast to Equation 10 , the updated DPV 1240 function ( e.g. , ReLU ) , and a second convolution layer . In produced by the operation of Equation 11 is only dependent some embodiments , the second convolution layer is not on the predicted DPV 1010 and estimated correction factors followed by an activation function . Both of the first convo 
produced by the second neural network 1210 based on the 50 lution layer and the second convolution layer in the block 
residual DPV 1220 and is not directly calculated from the implement 3D convolution operations and maintain the measured DPV 710-2 generated by system 700 . same number of channels at the output as the number of In an embodiment , the second neural network 1210 is channels at the input . The second stage effectively seeks to 
closely related to a Kalman filter , where , given an observa expand the receptive field of each element of the output of 
tion x , at time t and the hidden state hd - 1 at time t - 1 , the 55 the second stage . The dimensions of the output of the second updated hidden state is : stage are H / 4xW / 4x64x32 . 

The second stage of the CNN is followed by a third stage 
h4 = Whz - 1 + KV ( X - Wh - 1 ) , ( Eq . 12 ) of the CNN that includes a first convolution layer that 

where W is a transition matrix mapping the previous hidden receives a 32 channel input and applies a 3D convolution 
state to the current state ; K , is a gain matrix mapping the 60 operation utilizing a 3x3 convolution kernel to generate a 32 
residual in an observation space to the hidden state space ; channel output . The first convolution layer can be followed 
and V , is a measurement matrix mapping the estimation in by an activation function , such as a ReLU , and a second 
the hidden state space back to the observation space . In convolution layer . The second convolution layer receives the 
comparison with system 1200 , the sliding window 704 of 32 channel output of the ReLU following the first convo 
image frames are equivalent to observation X , the negative- 65 lution layer and applies a 3D convolution operation utilizing 
log depth probability volumes are equivalent to the hidden a 3x3 convolution kernel to generate an output ( e.g. , a 
state h ,, the warp function 1012 is equivalent to the transition residual gain corresponding to each value of the predicted 
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DPV 1010 ) . The output of the second neural network 1210 input to the neural network 210 , which is included in the 
has a dimension of H / 4xW / 4x64 , which is the same as the features 1302 , and has dimensions of HxWx67 . The first 
predicted DPV 1010 . convolution layer applies a convolution operation using a 

It will be appreciated that the updated DPV 1240 output 3x3 convolution kernel , followed by an activation function 
by the system 1200 has a resolution , in pixel space , that is 5 such as a leaky ReLU . The output of the leaky ReLU is 
1/4 the resolution of the reference frame 702-1 in each processed by a second convolution layer that applies a 
dimension of the pixel space . Consequently , in some convolution operation using a 3x3 convolution kernel , fol 
embodiments , the updated DPV 1240 is processed by a third lowed by an activation function such as a leaky ReLU . The 
neural network to generate a refined DPV that matches a second convolution layer reduces the number of channels 
resolution , in pixel space , of the reference frame 702-1 . 10 from 67 to 64. The output of the leaky ReLU of the second 
FIG . 13 illustrates a system 1300 for refining the updated convolution layer is processed by a third convolution layer 

DPV 1240 , in accordance with some embodiments . The that applies a convolution operation using a 3x3 convolution 
system 1300 includes a third neural network 1310 , which is kernel to generate an output of the third neural network 1310 
a CNN , referred to as R - Net , that is configured to up - sample having dimensions of HxWx64 , which is provided as the 
and refine the updated DPV 1240 back to an original image 15 refined DPV 1320 . 
resolution of the reference frame 702-1 . It will be appreci- It will be appreciated that the skip links in the third neural 
ated that a CNN is implemented by the system 1300 rather network 1310 do not connect to the input or output of earlier 
than a simple interpolation operation , such as bi - linear stages of the third neural network 1310 , as with traditional 
interpolation , in order to further refine the results during the skip links , but instead are connected to features extracted 
up - sampling operation rather than simply increasing the 20 from the neural network 210 utilized to process the reference 
resolution in the pixel space . The third neural network 1310 frame 702-1 , which are forwarded to the third neural net 
is essentially a U - net with skip links that takes as input both work 1310 for processing as features 1302 . 
the updated DPV 1240 from the system 1200 and features In summary , the entire system can include three separate 
1302 of the reference frame 702-1 extracted from the layers sections , each section employing a different neural network 
of the neural network 210. In an embodiment , the features 25 for processing the data within that section . In a first section , 
1302 include the output of the fusion layers 218 of the neural the first neural network 210 processes a sequence of image 
network 210 . frames 702 within a sliding window 704 to extract features 

In an embodiment , the third neural network 1310 includes 204 for each of the image frames 702. Features 204 for a 
a number of stages , each stage including a number of layers . number of source frames within the sliding window 704 can 
The input to the third neural network 1310 is processed by 30 be warped and filtered with the features 204 for a reference 
a first convolution layer of the first stage of the CNN . The frame 702-1 to generate a measured DPV 710. In a second 
first convolution layer applies a convolution operation using section , the measured DPV 710 for a reference frame 702-1 
a 3x3 convolution kernel , followed by an activation function and a predicted DPV 1010 , based on a warped version of the 
such as a leaky ReLU . The output of the leaky ReLU is measured DPV 710 for previous reference frame , are com 
processed by a second convolution layer that applies a 35 pared to generate a residual DPV 1220 that is processed by 
convolution operation using a 3x3 convolution kernel , fol- the second neural network 1210 to generate a residual gain 
lowed by an activation function such as a leaky ReLU . The volume 1030 that is combined with the predicted DPV 1010 
final layer in the first stage is a transposed convolution layer to generate an updated DPV 1240. In a third section , the 
that applies a 4x4 convolution kernel to double the spatial updated DPV 1240 is up - sampled using the third neural 
resolution of the output of the first stage , in pixel space . The 40 network 1310 to generate a refined DPV 1320 at an 
transposed convolution layer also reduces the number of increased resolution . The refined DPV 1320 can be pro 
channels of the output by half , generating an output of cessed to generate an estimated depth map and a correspond 
H / 2xW / 2x64 . ing confidence map associated with the reference frame 

The output of the first stage of the CNN is processed by 702-1 within the sliding window 704. Video streams can be 
a first convolution layer of the second stage of the CNN . The 45 processed by repeating the steps after advancing the sliding 
input to the second stage includes both the output of the first window 704 one frame at a time as new frames are received . 
stage and the output of an intermediate layer of the convo- FIGS . 14A & 14B illustrate a flowchart of a method 1400 
lution layers 212 of the neural network 210 , which is for estimating depth for a video stream captured using a 
included in the features 1302 , and has dimensions of H / 2x monocular image sensor , in accordance with an embodi 
W / 2x96 . The first convolution layer applies a convolution 50 ment . Although method 1400 is described in the context of 
operation using a 3x3 convolution kernel , followed by an a processing unit , the method 1400 may also be performed 
activation function such as a leaky ReLU . The output of the by a program , custom circuitry , or by a combination of 
leaky ReLU is processed by a second convolution layer that custom circuitry and a program . For example , the method 
applies a convolution operation using a 3x3 convolution 1400 may be executed by a GPU ( graphics processing unit ) , 
kernel , followed by an activation function such as a leaky 55 CPU ( central processing unit ) , or any processor capable of 
ReLU . Neither the first convolution layer nor the second estimating depth using a sequence of image frames . Fur 
convolution layer change the dimensionality of the input to thermore , persons of ordinary skill in the art will understand 
the second stage . The final layer in the second stage is a that any system that performs method 1400 is within the 
transposed convolution layer that applies a 4x4 convolution scope and spirit of embodiments of the present disclosure . 
kernel to double the spatial resolution of the output of the 60 At step 1402 , a sequence of image data is received . The 
second stage , in pixel space . The transposed convolution image data includes image frames included in a video stream 
layer also reduces the number of channels of the output , captured by a monocular image sensor . The image data can 
generating an output of HxWx64 . be stored in a memory and read from the memory by a 

The output of the second stage of the CNN is processed processor . Alternatively , the image data can be received via 
by a first convolution layer of the third stage of the CNN . 65 an interface from the monocular image sensor . 
The input to the third stage includes both the output of the At step 1404 , instances of a first neural network 210 
second stage and the reference frame 702-1 provided as process a reference frame 702-1 and at least one source 
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frame within a sliding window 704 to extract features 204 example , one or more of the elements described herein may 
for the reference frame 702-1 and at least one source frame be realized , in whole or in part , as an electronic hardware 
in the sliding window 704 . component . Other elements may be implemented in soft 

At step 1406 , a measured DPV 710 is generated for the ware , hardware , or a combination of software and hardware . 
reference frame 702-1 based on the features 204 for the 5 Moreover , some or all of these other elements may be 
reference frame 702-1 and at least one source frame in the combined , some may be omitted altogether , and additional sliding window 704. In an embodiment , the features 204 for components may be added while still achieving the func the at least one source frame are warped , via a warp tionality described herein . Thus , the subject matter described function , in accordance with relative camera pose informa herein may be embodied in many different variations , and all tion 706 associated with the at least one source frame . such variations are contemplated to be within the scope of At step 1408 , for a sliding window 704 at time t + 1 , a the claims . predicted DPV 1010 for a second reference frame is gener To facilitate an understanding of the subject matter ated by applying a warp function to the measured DPV 710 
for the reference frame 702-1 . described herein , many aspects are described in terms of 
At step 1410 , a residual DPV 1220 is processed using 15 sequences of actions . It will be recognized by those skilled 

layers of a second neural network 1210 to generate a residual in the art that the various actions may be performed by 
gain volume 1230. The residual DPV 1220 is a difference specialized circuits or circuitry , by program instructions 
between the predicted DPV 1010 and the measured DPV being executed by one or more processors , or by a combi 
710 for the second reference frame . nation of both . The description herein of any sequence of 
At step 1412 , the residual gain volume is summed with 20 actions is not intended to imply that the specific order 

the predicted DPV 1010 to generate an updated DPV 1240 described for performing that sequence must be followed . 
for the second reference frame . All methods described herein may be performed in any 
At step 1414 , the updated DPV 1240 is processed using suitable order unless otherwise indicated herein or otherwise 

layers of a third neural network 1310 to generate a refined clearly contradicted by context . 
DPV 1320 for the second reference frame . The use of the terms “ a ” and “ an ” and “ the ” and similar 

At step 1416 , a depth map and a confidence map are references in the context of describing the subject matter 
generated based on the refined DPV 1320. After step 1416 , ( particularly in the context of the following claims ) are to be 
method 1400 can be repeated as additional image frames are construed to cover both the singular and the plural , unless 
received within the video stream . otherwise indicated herein or clearly contradicted by con 

It will be appreciated that more accurate depth estimation 30 text . The use of the term “ at least one ” followed by a list of 
from a video stream captured by a monocular image sensor one or more items ( for example , " at least one of A and B ” ) 
can be utilized in a variety of applications . For example , is to be construed to mean one item selected from the listed 
robotics can benefit greatly from more accurate estimation items ( A or B ) or any combination of two or more of the 
of depth without having to incorporate additional sensors listed items ( A and B ) , unless otherwise indicated herein or 
such as depth sensors or multiple image sensors to capture 35 clearly contradicted by context . Furthermore , the foregoing 
stereoscopic images . In addition , autonomous vehicles can description is for the purpose of illustration only , and not for 
benefit from more accurate depth estimation in order to the purpose of limitation , as the scope of protection sought 
improve object avoidance algorithms . In yet another appli- is defined by the claims as set forth hereinafter together with 
cation , a user with a common smart phone with a single any equivalents thereof . The use of any and all examples , or 
camera can capture and reconstruct a 3D model ( e.g. , a point 40 exemplary language ( e.g. , “ such as ” ) provided herein , is 
cloud ) simply by capturing a video of the environment intended merely to better illustrate the subject matter and 
around the user . does not pose a limitation on the scope of the subject matter 

It is noted that the techniques described herein may be unless otherwise claimed . The use of the term “ based on " 
embodied in executable instructions stored in a computer and other like phrases indicating a condition for bringing 
readable medium for use by or in connection with a pro- 45 about a result , both in the claims and in the written descrip 
cessor - based instruction execution machine , system , appa tion , is not intended to foreclose any other conditions that 
ratus , or device . It will be appreciated by those skilled in the bring about that result . No language in the specification 
art that , for some embodiments , various types of computer- should be construed as indicating any non - claimed element 
readable media can be included for storing data . As used as essential to the practice of the invention as claimed . 
herein , a “ computer - readable medium ” includes one or more 50 
of any suitable media for storing the executable instructions What is claimed is : 
of a computer program such that the instruction execution 1. A computer - implemented method for estimating depth , 
machine , system , apparatus , or device may read ( or fetch ) the method comprising : 
the instructions from the computer - readable medium and receiving a sequence of input image data including image 
execute the instructions for carrying out the described 55 frames of a scene ; 
embodiments . Suitable storage formats include one or more processing a reference frame and at least one source frame 
of an electronic , magnetic , optical , and electromagnetic included in the sequence of input image data within a 
format . A non - exhaustive list of conventional exemplary window associated with the reference frame using 
computer - readable medium includes : a portable computer layers of a first neural network to extract features for 
diskette ; a random - access memory ( RAM ) ; a read - only 60 the reference frame and the at least one source frame 
memory ( ROM ) ; an erasable programmable read only within the window ; 
memory ( EPROM ) ; a flash memory device ; and optical generating a measured depth probability volume ( DPV ) 
storage devices , including a portable compact disc ( CD ) , a for the reference frame based on warped versions of the 
portable digital video disc ( DVD ) , and the like . features for the at least one source frame and the 

It should be understood that the arrangement of compo- 65 features for the reference frame ; and 
nents illustrated in the attached Figures are for illustrative generating a depth map and a confidence map based on 
purposes and that other arrangements are possible . For the measured DPV , 
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wherein the measured DPV includes a two - dimensional at least one processor communicatively coupled to the 
( 2D ) array of probability values for each of a plurality memory and configured to : 
of candidate depth values . process a reference frame and at least one source frame 

2. The computer - implemented method of claim 1 , included in the sequence of input image data within 
wherein generating the measured DPV comprises : a window associated with the reference frame using 

applying a warp function to the features for each source layers of a first neural network to extract features for 
frame in the at least one source frame to generate a the reference frame and the at least one source frame 
warped version of the features for each source frame . within the window ; 

3. The computer - implemented method of claim 2 , generate a measured depth probability volume ( DPV ) 
wherein the warp function , applied to the corresponding for the reference frame based on warped versions of 

the features for the at least one source frame and the features for a particular source frame , is based on relative features for the reference frame ; and camera pose information related to a difference between a 
first position of an image sensor associated with the refer generate a depth map and a confidence map based on 

the measured DPV , ence frame and a second position of the image sensor wherein the measured DPV includes a two - dimensional 
associated with the particular source frame . ( 2D ) array of probability values for each of a plu 

4. The computer - implemented method of claim 2 , rality of candidate depth values . 
wherein generating the measured DPV includes applying a 10. The system of claim 9 , wherein the at least one 
softmax function , in the depth dimension , to a sum of processor is further configured to : 
differences between the features for the reference frame and apply a warp function to the features for each source 
a warped version of the features for each source frame of the frame in the at least one source frame to generate a 
at least one source frame . warped version of the features for each source frame . 

5. The computer - implement method of claim 1 , the 11. The system of claim 10 , further comprising : 
method further comprising : an image sensor configured to capture the sequence of 

processing a second reference frame and at least one 25 input image data , 
source frame included in the sequence of input image wherein the warp function , applied to the features for a 
data within a second window associated with the sec particular source frame , is based on relative camera 
ond reference frame using layers of the first neural pose information related to a difference between a first 
network to extract features for the second reference position of the image sensor associated with the refer 
frame and the at least one source frame within the 30 ence frame and a second position of the image sensor 
second window ; associated with the particular source frame . 

generating a measured DPV for the second reference 12. The system of claim 11 , further comprising : 
frame based on the features for the second reference a positional sensing subsystem configured to generate the 
frame and warped versions of the features for the at relative camera pose information . 
least one source frame within the second window ; 13. The system of claim 12 , wherein the positional 

generating a predicted DPV for the second reference sensing subsystem includes an inertial measurement unit 
frame by applying a warp function to the measured ( IMU ) . 
DPV for the first reference frame ; and 14. The system of claim 10 , wherein the at least one 

generating an updated DPV for the second reference processor is further configured to apply a softmax function , 
frame based on the predicted DPV and the measured 40 in the depth dimension , to a sum of differences between the 
DPV for the second reference frame . features for the reference frame and the warped version of 

6. The computer - implemented method of claim 5 , the features for each source frame of the at least one source 
wherein generating the updated DPV for the second refer- frame . 
ence frame comprises : 15. The system of claim 9 , wherein the at least one 

multiplying the predicted DPV for the second reference 45 processor is further configured to : 
frame by a weight to generate a weighted predicted process a second reference frame and at least one source 
DPV ; and frame included in the sequence of input image data 

combining the weighted predicted DPV with the mea within a second window associated with the second 
sured DPV for the second reference frame . reference frame using layers of the first neural network 

7. The computer - implemented method of claim 5 , 50 to extract features for the second reference frame and 
wherein generating the updated DPV for the second refer- the at least one source frame within the second win 
ence frame comprises : dow ; 

processing a difference between the predicted DPV and generate a measured DPV for the second reference frame 
the measured DPV for the second reference frame based on the features for the second reference frame 
using layers of a second neural network to generate a 55 and warped versions of the features for the at least one 
residual gain volume ; and source frame within the second window ; 

summing the residual gain volume with the predicted generate a predicted DPV for the second reference frame 
DPV to generate the updated DPV . by applying a warp function to the measured DPV for 

8. The computer - implemented method of claim 7 , the the first reference frame ; and 
method further comprising processing the updated DPV for 60 generate an updated DPV for the second reference frame 
the second reference frame using layers of a third neural based on the predicted DPV and the measured DPV for 
network to generate a refined DPV for the second reference the second reference frame . 
frame , and wherein the depth map and the confidence map 16. The system of claim 15 , wherein the at least one 
are calculated based on the refined DPV . processor is further configured to : 

9. A system , comprising : multiply the predicted DPV for the second reference 
a memory storing a sequence of input image data includ- frame by a weight to generate a weighted predicted 

ing image frames ; and DPV ; and 
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combine the weighted predicted DPV with the measured processing a reference frame and at least one source frame 
DPV for the second reference frame . included in the sequence of input image data within a 

17. The system of claim 15 , wherein the at least one window associated with the reference frame using 
processor is further configured to : layers of a first neural network to extract features for process a difference between the predicted DPV and the the reference frame and the at least one source frame 

measured DPV for the second reference frame using within the window ; 
layers of a second neural network to generate a residual 
gain volume ; and generating a measured depth probability volume ( DPV ) 

for the source frame based on the features for the sum the residual gain volume with the predicted DPV to reference frame and the at least one source frame ; and generate the updated DPV . 
18. The system of claim 17 , wherein the at least one generating a depth map and a confidence map based on 

processor is further configured to process the updated DPV the measured DPV , 
for the second reference frame using layers of a third neural wherein the measured DPV includes a two - dimensional 
network to generate a refined DPV for the second reference ( 2D ) array of probability values for each of a plurality 
frame , and wherein the depth map and the confidence map of candidate depth values . 
are calculated based on the refined DPV . 20. The non - transitory computer - readable media of claim 19. A non - transitory computer - readable media storing 19 , wherein the steps further include : computer instructions for estimating depth that , when 
executed by one or more processors , cause the one or more applying a warp function to the features for each source 

frame in the at least one source frame to generate a processors to perform the steps of : 
receiving a sequence of input image data including image warped version of the features for each source frame . 

frames of a scene ; 
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