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FAST GAMMA - RAY 
INTERACTION - POSITION ESTIMATION 
STATEMENT REGARDING FEDERALLY 

SPONSORED RESEARCH OR DEVELOPMENT 

[ 0001 ] This invention was made with government support 
under Grant Nos . P41 - EB002035 and 5R01EB000803 , 
awarded by NIH / NIBIB . The U.S. government has certain 
rights in this invention . 

a 

BACKGROUND 

[ 0002 ] Scintillator - based detectors have been extensively 
used in both clinical and pre - clinical single photon emission 
computed tomography ( SPECT ) and positron emission 
tomography ( PET ) scanners , due to their relatively low cost , 
high gamma - ray stopping power , and fast timing ( T. K. 
Lewellen , Physics in Medicine & Biology , 2008 , 53 ( 17 ) : 
R287 ) . Position - estimation algorithms or decoding methods 
are applied for gamma - ray interaction position localization 
with signals induced by scintillation photons impinging on 
light sensors , such as photomultiplier tubes ( PMTs ) , silicon 
photomultipliers ( SiPMs ) , etc. Anger arithmetic has domi 
nated in gamma - ray interaction position estimation for 
decades due to its simplicity and fast estimation / decoding 
speed ( H. O. Anger , Review of scientific instruments , 1958 , 
29 ( 1 ) : 27-33 ) . 
[ 0003 ] However , driven by the demand for better spatial 
resolution and lower bias , many other gamma - ray position 
estimation / decoding algorithms based on reference datasets 
have been proposed and studied , such as look - up table 
( LUT ) ( Aarsvold et al . , Nuclear Science Symposium and 
Medical Imaging Conference Record , 1995 , IEEE , 3 : 1811 ) , 
contracting - grid search ( Hesterman et al . , IEEE transactions 
on nuclear science , 2010 , 57 ( 3 ) : 1077-1084 ) , k - nearest 
neighbor ( van Dam et al . , IEEE Transactions on Nuclear 
Science , 2011 , 58 ( 5 ) : 2139-2147 ) , and neural network 
( Yonggang et al . , IEEE Transactions on Nuclear Science , 
2011 , 58 ( 1 ) : 34-42 ) . These reference - data based methods not 
only provide better positioning capability for gamma - ray 
interactions , especially at detector edges and corners , but 
can also filter out events below a lower merit threshold ( for 
example , likelihood ( Barrett et al . , IEEE Transactions on 
Nuclear Science , 2009 , 56 ( 3 ) : 725-735 ) ) to reject events 
such as those that Compton scatter and deposit energy in 
multiple positions in the detector . 
[ 0004 ] Compared with Anger arithmetic , reference - data 
based methods need detector calibration to acquire their 
reference datasets , and the position estimation speed 
remains relatively slow due to the excessive computations 
required . Thus , the current need for position estimation is to 
try to achieve both high levels of accuracy and efficiency at 
the same time . The methods provided herein address these 
problems by providing systems and methods for estimating 
gamma- , X- , neutron , or proton - ray , or other high energy 
particle , interaction positions that are faster , more accurate , 
and more computationally and memory - use efficient than 
known systems and methods used in the medical imaging 
field . 

proton - ray , or other high energy particle , interaction position 
estimation , the disclosed method can be combined with 
various kinds of closeness metrics such Euclidean distance , 
maximum - likelihood estimation , etc. Compared with con 
ventionally known methods , the methods disclosed herein 
achieve high levels of speed and accuracy at the same time 
by using k - d tree data structures . 
[ 0006 ] The k - d tree is a search tree in which every leaf is 
a k - dimensional point . Every non - leaf node generates at 
least one hyperplane that divides the space into at least two 
parts , generally known as half - spaces . For example , in 
embodiments where the node is separated into two parts by 
a hyperplane , points to the left of this hyperplane ( such as on 
a number plane ) are represented by the left subtree of that 
node and points to the right of the hyperplane are repre 
sented by the right subtree . Every node in the tree is 
associated with at least one of the k dimensions , with the 
hyperplane perpendicular to that dimension's axis ( see J. L. 
Bentley , Communications of the ACM , 1975 , 18 ( 9 ) : 509 
517 ) . 
[ 0007 ] In an embodiment of the invention , the k - d tree 
search methods have a time complexity of O ( log ( N ) ) , 
where x is the number of branches at each node , and N is the 
number of entries in the reference data set , which means 
larger reference datasets are able to be used to efficiently 
estimate the interaction position of each event . In an 
embodiment , the k - d tree search methods have a time 
complexity of O ( log2 ( N ) ) . However , it should be noted that 
xis not restricted to 2. If a tree is constructed with 3 branches 
at each node , the time complexity would be O ( log3 ( N ) ) , and 
more branches are able to be made at each node . The 
accuracy of embodiments of the present invention is equal to 
the accuracy found in exhaustive search methods , which 
yield the highest achievable accuracy . 
[ 0008 ] In aspects of the present invention , the methods 
have no restriction on the data structure of the reference 
dataset and are able to still work with complicated mean 
detector response functions ( MDRFs ) , meaning the dis 
closed methods are more robust compared with other meth 
ods such as contracting grid ( CG ) search or vector search 
( VS ) methods that could yield locally optimal , instead of 
globally optimal , results . 
[ 0009 ] In an embodiment , the present invention provides 
a method for estimating a position of an interaction event 
using signals induced by scintillation photons on one or 
more light sensors , the method comprising : 

[ 0010 ) receiving , from the light sensors and by pro 
cessor communicatively coupled to the light sensors , a 
dataset comprising values corresponding to the signals 
induced by the scintillation photons ; 

[ 0011 ] assigning , by the processor , a partition criteria to 
a k - d tree data structure having nodes and leafs , 
wherein the nodes include a root node , intermediate 
nodes , and penultimate nodes , wherein the root node , 
the intermediate nodes , the penultimate nodes , and the 
leafs are linked by branches ; 

[ 0012 ] storing , by the processor and in a memory device 
communicatively coupled to the processor , the received 
dataset to the k - d tree data structure ; 

[ 0013 ] querying , by the processor , the k - d tree for the 
position of the interaction event , wherein the querying 
step comprises : ( a ) calculating a compound value from 
a query vector ; ( b ) determining , by the processor , a 
branch of the k - d tree to search based on a searching 

a 

SUMMARY OF THE INVENTION 

[ 0005 ] The present invention provides methods and sys 
tems for estimating gamma - ray interaction - positions using 
k - d tree searching . As applied to gamma- , X- , neutron , or 
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strategy ; ( c ) searching , by the processor , the branch of 
the k - d tree selected by the searching strategy ; 

[ 0014 ] for the intermediate nodes and the penultimate 
nodes , iterating , by the processor , through steps ( a ) , ( b ) , 
and ( c ) ; and 

[ 0015 ] returning , by the processor , the value stored in 
the leaf as a query result for the position of the 
gamma - ray interaction position . 

[ 0016 ] In an embodiment , the interaction event is a 
gamma - ray , X - ray , neutron , proton , or other high energy 
particle interaction within the detector . Preferably , the inter 
action event is a gamma - ray and / or X - ray interaction within 
the detector . Optionally , the method further comprises con 
structing , by the processor , the k - d tree data structure as a 
binary search tree structure . 
[ 0017 ] In an embodiment , the compound value is a value 
of a certain dimension of the query vector , or a linear / non 
linear combination of values from two or even more dimen 
sions of the query vector ( for instance , distance to a hyper 
plane ) . Additionally , or instead , the compound value is a 
likelihood value , or optionally a likelihood reduction value . 
[ 0018 ] Optionally , the received dataset as described herein 
comprise an array of values corresponding to the signals 
induced by the scintillation photons , and the method further 
comprises constructing , by the processor , the k - d tree data 
structure from the array of values as a one - dimensional k - d 
tree . 

[ 0019 ] Alternatively , the received dataset comprises a 
plurality of vectors , each of the plurality of vectors having 
two or more values corresponding to the signals induced by 
the scintillation photons , and the method further comprises 
constructing , by the processor , the k - d tree data structure 
from the plurality of vectors as a k - d tree having at least 
two - dimensions . 
[ 0020 ] In an embodiment , the method further comprises : 
determining , by the processor and based on the received 
dataset , mean detector response functions ( MDRFs ) , where 
the MDRFs are defined as the mean signal responses of the 
light sensors as functions of known interaction positions 
( such as gamma - ray , X - ray , neutron , proton and / or other 
high energy particle interactions ) ; and constructing , by the 
processor , the k - d tree data structure from the MDRFs . 
[ 0021 ] In an embodiment , the assigning step comprises 
applying , by the processor , a rule for each of the nodes , 
wherein the querying step includes : comparing , by the 
processor , a compound value calculated from a query for the 
querying step with a boundary value stored in the root node ; 
and selecting , by the processor and based on a result of the 
comparing step and the applied rule , one of the branches to 
search for the searching step , wherein the iterating step 
includes applying , by the processor , the same rule for the 
intermediate nodes and the penultimate nodes . 
[ 0022 ] Optionally , the one or more boundary values 
include at least two boundary values , and comparing the 
compound value calculated from the query vector for the 
querying step with one or more boundary values stored in 
the root node comprises determining that the compound 
value falls in an interval bounded by the at least two 
boundary values , determining that the compound value is 
less than the at least two boundary values , and / or determin 
ing that the compound value is greater than the at least two 
boundary values . 

[ 0023 ] In an embodiment , the method further comprises 
computing , by the processor , a distance ( or merit ) between 
the leaf storing the value of the query result and the query 
for the querying step . 
[ 0024 ] Optionally , the receiving step includes receiving , 
by the processor , the dataset from light sensors of a single 
photon emission computed tomography ( SPECT ) scanner or 
a positron emission tomography ( PET ) scanner . 
[ 0025 ] Optionally , querying the k - d tree for the position of 
the interaction event position comprises : ( a ) determining , by 
the processor , a branch of the k - d tree that satisfies a selected 
searching strategy ; ( b ) searching , by the processor , the 
branch of the k - d tree that satisfies the searching strategy ; 
and ( c ) determining , by the processor , a value stored in the 
node corresponding to a result of the searching step . 
[ 0026 ] In an embodiment , the present invention provides 
a system for estimating a position of an interaction event , the 
system comprising : light sensors for generating signals 
induced by scintillation photons incident thereupon ; a 
memory device ; and a processor communicatively coupled 
to the light sensors and to the memory device . The processor 
is programmed to : 

[ 0027 ] receive , from the light sensors , a dataset includ 
ing values corresponding to the signals induced by the 
scintillation photons ; 

[ 0028 ] assign a partition criteria to a k - d tree data 
structure having nodes and leafs , wherein the nodes 
include a root node , intermediate nodes , and penulti 
mate nodes , wherein the root node , the intermediate 
nodes , the penultimate nodes , and the leafs are linked 
by branches ; 

[ 0029 ] store , in the memory , the received dataset to the 
k - d tree data structure ; 

[ 0030 ] querying , by the processor , the k - d tree for the 
position of the interaction event position , wherein the 
querying step comprises : ( a ) calculate a compound 
value from a query vector ; ( b ) determine a branch of the 
k - d tree to search based on a searching strategy ; ( c ) 
search the branch of the k - d tree selected by the 
searching strategy ; 

[ 0031 ] for the intermediate nodes and the penultimate 
nodes , iterate through processor operations ( a ) , ( b ) , and 
( c ) ; and 

[ 0032 ] return the value stored in the leaf as a query 
result for the position of the gamma - ray interaction 
position . 

[ 0033 ] In an embodiment , the interaction event is a 
gamma - ray , X - ray , neutron , proton , or other high energy 
particle interaction within the detector . Preferably , the inter 
action event is a gamma - ray and / or X - ray interaction within 
the detector . 
[ 0034 ] Optionally , the processor is further programmed to 
construct the k - d tree data structure as a binary search tree 
structure . In an embodiment , the processor is further pro 
grammed to : determine , based on the received dataset , mean 
detector response functions ( MDRFs ) , the MDRFs defined 
as the mean signal responses of the light sensors as functions 
of known interaction event positions , and construct the k - d 
tree data structure from the MDRFs . 
[ 0035 ] Optionally , the received dataset as described herein 
comprises an array of values corresponding to the signals 
induced by the scintillation photons , and the method further 
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[ 0048 ] for the intermediate nodes and the penultimate 
nodes , iterate through the processor operations ( a ) , ( b ) , 
and ( c ) ; and 

[ 0049 ] return the value stored in the leaf as a query 
result for the position of the gamma - ray interaction 
position . 

[ 0050 ] In an embodiment , the interaction event is a 
gamma - ray , X - ray , neutron , proton , or other high energy 
particle interaction within the detector . Preferably , the inter 
action event is a gamma - ray or X - ray interaction within the 
detector . 
[ 0051 ] Representative claims are provided herein , and are 
specifically incorporated by reference . 
[ 0052 ] Without wishing to be bound by any particular 
theory , there may be discussion herein of beliefs or under 
standings of underlying principles relating to the devices and 
methods disclosed herein . It is recognized that regardless of 
the ultimate correctness of any mechanistic explanation or 
hypothesis , an embodiment of the invention can nonetheless 
be operative and useful . 

BRIEF DESCRIPTION OF THE DRAWINGS 

a 

comprises constructing , by the processor , the k - d tree data 
structure from the array of values as a one - dimensional k - d 
tree . 
[ 0036 ] Alternatively , the received dataset comprises a 
plurality of vectors , each of the plurality of vectors having 
two or more values corresponding to the signals induced by 
the scintillation photons , and the method further comprises 
constructing , by the processor , the k - d tree data structure 
from the plurality of vectors as a k - d tree having at least 
two - dimensions . 
[ 0037 ] In an embodiment , for the assigning processor 
operation , the processor is further programmed to apply a 
rule for each of the nodes , and wherein , for the querying 
processor operation , the processor is further programmed to : 

[ 0038 ] compare a compound value from a query for the 
querying step with a boundary value stored in the root 
node ; and 

[ 0039 ] select , based on a result of the comparing pro 
cessor operation and the applied rule , one of two 
branches to search for the searching processor opera 
tion , 

[ 0040 ] wherein , for the iterating processor operation , 
the processor is further programmed to apply the same 
rule for the intermediate nodes and the penultimate 
nodes 

[ 0041 ] In an embodiment , the processor is further pro 
grammed to compute a distance ( or merit ) between the leaf 
storing the value of the query result and the query for the 
querying processor operation . 
[ 0042 ] Optionally , the system comprises a medical imag 
ing system including the light sensors , wherein , for the 
receiving processor operation , the processor is further pro 
grammed to receive the dataset from light sensors of medical 
imaging system . Such medical imaging systems include , but 
are not limited to , a single - photon emission computed 
tomography ( SPECT ) scanner , and a positron emission 
tomography ( PET ) scanner . 
[ 0043 ] In an embodiment , the present invention provides 
a non - transient computer readable medium comprising pro 
cessor - executable instructions stored therein for estimating a 
position of an interaction event , which , when executed by 
one or more processors communicatively coupled to one or 
more memory devices , and light sensors for generating 
signals induced by scintillation photons incident thereupon , 
cause the one or more processors to : 

[ 0044 ] receive , from the light sensors , a dataset includ 
ing values corresponding to the signals induced by the 
scintillation photons ; 

[ 0045 ] assign a partition criteria to a k - d tree data 
structure having nodes and leafs , wherein the nodes 
include a root node , intermediate nodes , and penulti 
mate nodes , wherein the root node , the intermediate 
nodes , the penultimate nodes , and the leafs are linked 
by branches ; 

[ 0046 ] store , in the memory , the received dataset to the 
k - d tree data structure ; 

[ 0047 ] query the k - d tree for the position of the inter 
action event position , wherein , for querying the k - d 
tree , the processor - executable program instructs the 
one or more processors to : ( a ) calculate a compound 
value from a query vector ; ( b ) determine a branch of the 
k - d tree to search based on a searching strategy ; ( c ) 
search the branch of the k - d tree selected by the 
searching strategy ; 

[ 0053 ] The figures interspersed throughout the application 
are specifically incorporated by reference herein . 
[ 0054 ] FIG . 1 shows a 1 - d tree in an embodiment of the 
invention , sorting the 8 numbers in ascending order . The 
ellipses are nodes and boxes are leaves . 
[ 0055 ] FIG . 2 shows an example of a 2 - d tree organizing 
16 2 - d vectors . Each leaf in the tree represents a 2 - d vector . 
[ 0056 ] FIG . 3 shows a 2 - d map representing the 16 2 - d 
vectors of FIG . 2. Each dot is one vector . 
[ 0057 ] FIG . 4 shows the 2 - d map of FIG . 3 segmented by 
the 2 - d tree . Each line represents a node in the 2 - d tree . 
[ 0058 ] FIG . 5 shows a 3 - d tree segmenting the 3 - d space 
into multiple subspaces . 
[ 0059 ] FIG . 6 shows MDRFs achieved by a simulation of 
an ideally thin gamma - ray beam of 511 keV gamma - ray 
photons . 
[ 0060 ] FIG . 7 shows an estimated projection image of 
seven fan beams of width 0.44 mm , using an exhaustive 
search method . Variance is large near detector edges due to 
the undesirable total internal reflection ( TIR ) on detector 
edges . 
[ 0061 ] FIG . 8 shows an estimated projection image of the 
seven fan beams of width 0:44 mm , using a contracting - grid 
search method . 
[ 0062 ] FIG . 9 shows a likelihood map of three random 
events . 
[ 0063 ] FIG . 10 shows an estimated projection image of the 
seven fan beams using a k - d tree search method . 
[ 0064 ] FIG . 11 shows measured MDRFs of a prototype 
detector in an embodiment of the invention . 
[ 0065 ] FIG . 12 shows six slit projection images estimated 
using the exhaustive search method . 
[ 0066 ] FIG . 13 shows the six slit projection images esti 
mated using the contracting - grid search method . 
[ 0067 ] FIG . 14 shows the six slit projection images esti 
mated using the k - d tree search method . 
[ 0068 ] FIG . 15 shows a schematic diagram of a system for 
estimating a position of an interaction event which generates 
scintillation photons within a detector in an embodiment of 
the invention . 
[ 0069 ] FIG . 16 shows a flow chart of a method for 
estimating a position of an interaction event which generates 

a 

a 
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scintillation photons within a detector using signals induced 
within a detector by scintillation photons on one or more 
light sensors in an embodiment of the invention . 

exhaustive search method . Also , utilizing the k - d tree data 
structure , searching is much faster and more efficient as less 
computations are required . 

DETAILED DESCRIPTION OF THE 
INVENTION 

[ 0070 ] In general , the terms and phrases used herein have 
their art - recognized meaning , which can be found by refer 
ence to standard texts , journal references and contexts 
known those skilled in the art . Any definitions used herein 
are provided to clarify their specific use in the context of the 
invention . 

Example 1. Brief Introduction about k - d Tree 
[ 0077 ] K - d tree stands for k - dimensional tree- a tree 
structure constructed with data of k dimensions . High 
dimensional hyperplanes are used to subdivide the reference 
data set into many partitions , which will eventually assist the 
searching process . A one - dimensional tree can be called 1 - d 
tree , which is actually a binary tree and relatively easy to 
understand . An example of the one - dimensional case is 
shown in FIG . 1 . 

Overview 

[ 0071 ] Previous methods for estimating interaction posi 
tions have used mean - detector - response functions ( MDRFs ) 
derived from calibration to represent the characteristics of 
the detector , and to search among these candidate positions 
in the MDRFs using contracting - grid ( CG ) search methods 
to find the position with highest likelihood compared to 
other candidates ( ML ) ( Hesterman et al . , IEEE Transactions 
on Nuclear Science , 2010 , 57 ( 3 ) : 1077-1084 ) . However , 
these methods may fail to find the global maximum with 
detectors having complicated MDRFs , such as edge - readout 
detectors with optical barriers ( Li et al . , Medical physics , 
2018 , 45 ( 6 ) : 2425-2438 ) . As described in embodiments 
herein , methods are provided that can accurately estimate 
gamma- , X- , neutron , or proton - ray , or other high energy 
particle , interaction position with satisfactory accuracy and 
with a short search time . In embodiments of the present 
invention , these methods use a multi - dimensional tree struc 
ture ( k - d tree ) ( J. L. Bentley , Communications of the ACM , 
1975 , 18 ( 9 ) : 509-517 ) constructed with mean - detector - re 
sponse functions ( MDRFs ) to assist finding the nearest 
neighbor of the gamma- , X- , neutron , or proton - ray , or other 
high energy particle , interaction event signal among the 
candidates in the MDRFs . 
[ 0072 ] Generally , speaking , in the process of searching 
results for a query vector , at each node , a compound value 
is calculated by a series of linear / non - linear combinations of 
values from the query vector : For example , the compound 
value may equal v [ 0 ] + 2v [ 1 ] + 0.03 * ( v [ 2 ] ) . 
[ 0073 ] Each node in the k - d tree contains a series of 
boundary values ( 1 boundary value for a 2 branch case , 2 
boundary values for a 3 branch case , 3 boundary values for 
a 4 branch case , etc. ) . The searching process involves 
comparing the compound value with the boundary value , 
and finding the branch that satisfies a selected searching 
strategy that corresponds to the partition criteria ( i.e. , deter 
mine if the compound value falls within , above or below an 
interval bounded by the boundary values ) . 
[ 0074 ] The searching is continued in the branch that 
satisfies the searching strategy . Additionally , searching can 
also be continued in the branch that violates the searching 
criteria ( in this case , accumulated error increases ) . 
[ 0075 ] A search is continued in a branch if the accumu 
lated error is still smaller than the distance ( or merit ) 
between the query vector and current “ Champion ” leaf . If 
the accumulated error is larger than the distance ( or merit ) , 
then branch will not be searched further . 
[ 0076 ] These k - d tree search methods have superior accu 
racy since the accuracy of position estimates is equivalent to 

1.1 . One - Dimensional Case 
[ 0078 ] Suppose there is an array of 8 numbers : { 1 , 2 , 2.3 , 
4 , 5.5 , 7 , 8.1 , 8.2 } . In such a case , a 1 - d tree can be 
constructed . The first node can be constructed with a certain 
value that splits the whole array of numbers into two parts . 
The numbers ( e.g. , the array elements ) smaller than the 
value of the node's number go to the left branch of the node , 
while the numbers greater than the node's number go to the 
right branch of the node . The second and third nodes can be 
found in the left and right branches of the root node , 
respectively , using the same procedure . The nodes are con 
structed continuously until only one element is left in a 
branch , and this element is defined as a leaf . Such a 1 - d tree 
constructed is shown in FIG . 1 , where all the above 8 
numbers are stored as leaves . 
[ 0079 ] For the use case illustrated in FIG . 1 , the value of 
first node of the 1 - d tree was chosen to be 4.75 , which is 
actually the mean value of 4 and 5.5 for simplicity . The 
second node's value is the medium of the numbers in the left 
branch of the first node , that is the medium of { 1 , 2 , 2.3 , 4 } , 
which is the mean of 2 and 2.3 . This procedure is repeated 
until all the numbers in the array become leaves , indicating 
that the binary search tree has been constructed . The 1 - d tree 
can sort the numbers in either ascending or descending 
order , depending on the rule to construct the tree . 
[ 0080 ] This 1 - d tree is also a binary search tree , and 
searching an element can be very efficient , especially when 
the total number of leaves becomes large . For example , to 
determine if the number 4 is in the tree or not , the searching 
process can start with comparing 4 with the root node's 
value which is 4.75 . Since 4x4.75 , the process starts to 
search the node's left branch . Then , 4 is compared with 2.15 
( the second node ) and since 4 > 2.15 , the process starts to 
search the second node's right branch . The searching con 
tinues until 4 is found in the leaf node . The total time 
complexity of searching a binary search tree is O ( log ( N ) ) , 
where x is the number of branches at each node ( x = 2 for a 
binary search tree ) , and where N is the number of total 
leaves in the binary search tree . 
[ 0081 ] Where the number of branches at each node is 2 
( the binary search tree case ) , the time complexity would be 
O ( log2 ( N ) ) . However , the number of branches at each node 
can be greater than 2 , ( i.e. , X can be 3 , 4 , 5 or more ) . For 
example , a node can have three branches where v [ 0 ] + 2v [ 1 ] 
< -1.5 ( left branch ) , v [ 0 ] + 2v [ 1 ] > = - 1.5 and v [ 0 ] + 2v [ 1 ] < = 2 
( middle branch ) , and v [ O ] + 2v [ 1 ] > 2 ( right branch ) . 
1.2 . Two - Dimensional Case 
[ 0082 ] A 2 - d tree is a two - dimensional binary search tree , 
whose leaves have two dimensions . Each node of the 2 - d 

a 
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tree also splits the whole ( e.g. , current ) dataset into two data 
subsets . Since the dataset contains 2 - d vectors , it is vital to 
decide in which of the two dimensions to set the node's 
value that splits the dataset . In the following example , the 
splitting dimension is randomly picked to set the node's 
value . a 

Example 2. Searching for k - Nearest Neighbor 
( KNN ) 

[ 0089 ] One application of the k - d tree is to search for the 
presence of a specific event efficiently . However , other 
methods such as a hash table , or maps , can do a search even 
more efficiently . Moreover , when the event matches no entry 
( leaf ) of the k - d tree , one may still be interested in finding 
the unknown event’s nearest neighbors among the entries 
( leaves ) . That is , to use certain figure - of - merit metrics to 
measure the distance between the event and all the entries in 
the k - d tree and find the k entries with the highest or lowest 
merit values . This problem is called the k - nearest neighbor 
problem . Note that the “ k ” here is different from the “ k ” in 
k - d tree : whereas the “ k ” in “ k - nearest neighbor ” represents 
the number of entries in a dataset with highest or lowest 
merit values , the “ k ” in “ k - d tree ” stands for the dimension 
ality of the events inside the tree . For purposes of this 
disclosure , only the “ nearest ” entry is searched for , which 
corresponds to a 1 - nearest neighbor problem . 
[ 0090 ) For example , if the query event ( also referred to 
herein as “ query vector ” ) is denoted as e , one entry inside 
the k - d tree is noted as T ' , and the dimensionality is M , the 
Le norm can be used as the merit value to measure their closeness : 

[ 0083 ] The dataset ( containing 2 - d vectors ) to construct an 
example 2 - d tree is : { [ 0.3 , 1.5 ] , [ 2.3 , 3 ] , [ 2.1 , 1.3 ] , [ 3 , 3 ] , 
[ 1.7 ; 3.7 ] , [ 2 ; 0.3 ] , [ 3 ; 5 ] , [ 2.6 , 6 ] , [ 3 , 2 ] ; [ 3.1 , 4 ] , [ 1 , 3 ] ; [ 2 , 
4 ] , ( 5.2 , 1 ] , [ 4.8 , 2 ] , [ 4 , 0.2 ] , [ 4 , 1 ] } . The corresponding 
constructed 2 - d tree is shown in FIG . 2 , where each leaf in 
the tree represents a 2 - d vector . The 16 2 - d vectors can be 
plotted on a 2 - d map , as shown in FIG . 3 , where each dot is 
one vector . 

[ 0084 ] The nodes of the 2 - d tree work as partitions to 
segment the region containing the 2 - d vectors ( points in the 
map ) . For example , the first node y : 2.5 is a line ( y = 2.5 ) , 
separating 2 - d vectors equally into 2 groups . The 2 - d vectors 
whose y component is lower than 2.5 are classified into its 
left branch , while the 2 - d vectors whose y component is 
larger than 2.5 are classified into its right branch . The 2 - d 
map segmented by the 2 - d tree is shown in FIG . 4 , where 
each line represents a node in the 2 - d tree . 
[ 0085 ] After the construction of the 2 - d tree , a search can 
be done similarly to the 1 - d case . For example , to search 
whether a 2 - d vector [ 1 , 3 ] is in the tree or not , the y 
component value 3 of this vector is compared with 2.5 ; since 
3 > 2.5 , the search should continue in the right branch . Then , 
the x component value 1 of this vector is compared with 2.3 ; 
since 1 < 2.3 , the subsequent search should be done in the left 
branch . Then 3 is compared with 3.3 ; since 3 < 3.3 , the search 
should continue to the left branch . Then 1 is compared with 
1.75 ; since 1 < 1.75 , and the left branch is a leaf , the vector 
[ 1 , 3 ] is compared with this leaf . Because they are equal , it 
can be concluded that the vector [ 1 , 3 ] is in this 2 - d tree . 

2 

p 

1 / p ( 1 ) 
merit ( 1 ) --- = le ; -lip 

i = 1 

[ 0091 ] The goal is to find the entry in the reference dataset 
with the smallest distance to the query event . An exhaustive 
search can be used to solve this problem , but the relatively 
long searching time is a big disadvantage for processing 
many events . The k - d tree can be used to organize the entries 
in the reference dataset into a binary search tree structure 
across k dimensions , and the search for the nearest neighbors 
for the query event can then be performed efficiently . 

1.3 . Multi - Dimensional Tree 

a 

[ 0086 ] A k - d tree is a binary tree based on data vectors 
with k dimensions . Similar to the 2 - d tree case , each node 
has two attributes . The first attribute is the index of dimen 
sion , and the second attribute is the value indicating the 
boundary for partition . The index of dimensionality indi 
cates on which axis the partition occurs , and the partition 
value indicates the specific partition position on the axis . 
[ 0087 ] A 3 - d tree can be viewed as a series of planes 
segmenting the 3 - d space into multiple subspaces , that 
contains data points as equally as possible , as shown in FIG . 
5 ( WIKIPEDIA , “ Example of 3d tree , " en.wikipedia.org/ 
wiki / K - d_tree [ Online ; accessed 19 Feb. 2018 ] ) . It may be 
hard to image a 4 - d or 5 - d tree , but the basic principle is the 

2.1 . Pruning of a Branch 
[ 0092 ] The searching process traverses the whole tree 
while following a certain strategy . For example , a depth - first 
search strategy can be used in the algorithm . In this work , 
the branch that satisfies the partition criteria is always 
searched first . For instance , at a node , if event [ node.idx ] 
< node.value , then the left branch is searched first . The left 
branch stores entries so that entry [ node.idx ] < node.value , 
and node.idx indicates the dimension to split , while node . 
value is the boundary value . When a leaf node is visited , 
equation ( 1 ) can be used to calculate the distance between 
the event and the leaf . In this example , the p in equation ( 1 ) 
is set as 2 , which corresponds to a Euclidean distance for 
simplicity . The current minimum distance ( meritmin ) and its 
corresponding entry values ( reference vector ) are stored . 
[ 0093 ] However , in order to accelerate the searching pro 
cess , some branches can be pruned ( not searched ) if certain 

same . 

[ 0088 ] Note that the criteria for constructing each node of 
the multi - dimensional tree is that : The dimension and value 
that “ best ” split the reference data ( or entry data ) are chosen . 
Since under the influence of noise , a small gap between two 
branches will cause crosstalk between its two branches , 
events could be misclassified into the wrong branch , which 
induces search error , which would slow down the searching 
process as introduced below . So , the gaps between two 
branches should be as large as possible , especially for the 
nodes close to root node . 

conditions are met . A vector cost is used to store the 

deviation in each dimension , so the vector cost has the same 
dimension as an event vector . The deviation is caused by 
choosing the branch that violates the partition criteria . For 
example , at a node , if event [ node.idx ] < node.value , but the 
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total 

? 

right branch is searched instead of the left branch , then the 
deviation ( dev ) is defined as levent [ node.idx ] -node.valuel . 
If dev > cost [ node.idx ) , then the deviation dev is used to 
update the corresponding entry of cost ( cost [ node.idx ] = dev ) . 
Then before searching the right branch , the total deviation 
dev total ( Si = 1M cost [ i ] ) 1/2 is computed . If dev tota / < merityin , 
the search can be extended to include the right branch ; 
otherwise , there is no need to search as the accumulated 
error already exceeds the that of current best result , meaning 
no better ( closer ) entry can be found in the right branch . 
[ 0094 ] The pruning can greatly increase the search speed , 
since a large fraction of branches can be excluded from the 
search path for a specific event . This is the key aspect of k - d 
tree search , since if no pruning is done , the total search time 
is equivalent to that of the exhaustive search method . 

dev total 

dev total 

[ 0110 ] 15. Since devistar V ( 4.8-4.4 ) 2+ ( 2.6–2.5 ) 2 -0.412 , 2 
( considering cumulative error in both x and y dimensions , as 
there is already 0.1 error in y dimension ) < meritmin = 0.6 , a 
better result might be found in its left branch ; go to node y : 
0.65 . 
[ 0111 ] 16. Compare y components ; since 2.6 > 0.65 , com 
pare the query vector with its right leaf ; because the distance 
is 1.79 > meritmin = 0.6 , go back to node y : 0.65 . 
[ 0112 ] 17 . Because 

V , ( 4.8-4.4 ) 2+ ( 2.6-0.65 ) 2-1.99 > meritmin = 0.6 , there is no 
need to search the left branch ; go back to node x : 4.4 . 
[ 0113 ] 18. Since both branches of the node x : 4.4 have 
been searched , continue to go back to node x : 3.4 . 
[ 0114 ] 19 . Since 

( 4.8-3.4 ) 2+ ( 2.6–2.5 ) 2-1.40 > meritmin = 0.6 , there is no V 
need to search in its left branch ; go back to node y : 2.5 . 
[ 0115 ] 20. Both branches of the root node y : 2.5 have been 
searched , the whole searching is finished ; the nearest neigh 
bor is vector [ 4.8 , 2 ] . 
[ 0116 ] In summary , different actions are taken according 
to different conditions : 
[ 0117 ] Condition 1 : If none of the current node's two 
branches have been searched , then search the branch that 
satisfies the partitioning criteria with the query event . 
[ 0118 ] Condition 2 : If one of the current node's two 
branches has already been searched , then determine whether 
the other branch satisfies dev total , meritmini if SO , search in 
the other branch ; if not , go to its parent node . 
[ 0119 ] Condition 3 : If both of the node's two branches are 
searched , then go back to its parent node . 
[ 0120 ] Condition 4 : If this node is actually a leaf , compute 
its distance to the query event . If this distance is smaller than 
the current meritmin value , then update the meritmin and 
record the leaf's position . 
[ 0121 ] Note : The merit , is initialized with a very large 
number . The process of search is terminated if all branches 
of the root node have been searched or pruned . 
2.3 . Integrating Maximum - Likelihood Estimation into k - d 
Tree Search 
[ 0122 ] The example above uses the Euclidean distance as 
the metric to judge the closeness of a query vector to a 
reference data sample . Other metrics that incorporate statis 
tic properties of the data , such as likelihood , can also be used 
with k - d tree search . If the noise characteristics of the 
detector can be modeled accurately , the maximum likeli 
hood method will yield more accurate results ( Barrett et al . , 
IEEE Transactions on Nuclear Science , 2009 , 56 ( 3 ) : 725 
735 ) . 
[ 0123 ] If the numbers of detected photons of a single 
gamma - ray interaction on the k light sensors are no , nj , 
nx - 1 , and if a reference sample's values in a leaf are ro , 11 , 

. PK - 1 , then under assumption of Poisson statistics , the 
probability of the detected photons given the reference 
sample is : 

? 

2.2 . A 2 - d Tree Search Example 
[ 0095 ] Take the 2 - d tree in FIG . 2 for example . If the query 
event is [ 4.8 , 2.6 ] , and it is desired to find its nearest 
neighbor in the tree , then the search process can be described 
as follows : 
[ 0096 ] 1. At root node y : 2.5 , compare y components ; 
since 2.6 > 2.5 , go to node x : 2 : 3 . 
[ 0097 ] 2. Compare the x component ; since 4.8 > 2.3 , go to 
node y : 4.45 . 
[ 0098 ] 3. Compare y components ; since 2.6 < 4.45 , go to 
node y : 3.5 . 
[ 0099 ] 4. Compare y components ; since 2.6 < 3.5 and since 
the left branch is a leaf , compare the query event with the 
leaf . The distance between the query vector and this leaf is 

( 4.8–3 ) 2+ ( 2.6-3 ) -1.84 ; record this distance as meritmin ) 
then return to node y : 3.5 . 
[ 0100 ] 5. Before visiting its right branch , the total devia 
tion needs to be calculated and compared with merit . 
Because dev total = ! 3.5-2.61 = 0.9 , which is smaller than mer 
itmin = 1.84 , a better result ( closer entry ) could still be found 
in this node's right branch and the search is continued there . 
[ 0101 ] 6. Compare the query vector [ 4.8 , 2.6 ] with the leaf 
[ 3.1 , 4 ] ; because the distance is 2.20 , which is larger than 
meritmin , then go back to node y : 3.5 . 
[ 0102 ] 7. Since both the branches of node y : 3.5 have been 
visited , continue to go back to node y : 4.45 . 
[ 0103 ] 8. Because dev , total = 14.45–2.61 = 1.95 > meritmin = 1 . 
84 , there is no need to search its right branch , then continue 
to go to node x : 2.3 . 
[ 0104 ] 9. Because devota 14.8-2.31 = 2.5 > meritmin = 1.84 , = 
there is no need to search its left branch , then go back to 
node y : 2.5 . 
[ 0105 ] 10. Because dev total = 12.6–2.51 = 0.1 < meritmin = 1.84 , 
it is possible to find a better result in its left branch , then go 
to node x : 3.4 . 
[ 0106 ] 11. Compare x components ; since 4.8 > 3.4 , go to 
node x : 4.4 . 
[ 0107 ] 12. Compare x components ; since 4.8 > 4.4 , go to 
node y : 1.4 . 
[ 0108 ] 13. Compare y components ; since 2.6 > 1.4 , and the 
right branch is a leaf , compare the query vector [ 4.8 , 2.6 ] 
with the leaf [ 4.8 , 2 ] ; the distance is 0.6 < meritmin = 1.84 , thus 
a better result is found ; update meritmin with 0.6 and record 
this leaf [ 4.8 , 2 ] , then go back to node y : 1.4 . 
[ 0109 ] 14. Because dev , = 12.6-1.41 = 1.2 > meritmin = 0.6 , 
there is no need to search its left branch ; go back to node x : 
4.4 . 

min 

' 

a 

K - 1 ( 2 ) ni 
e 

P ( no , ni , ... , nk - 1 .ro , r1 , ... , " K - 1 ) = ni ! 
i = 0 

total 
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[ 0124 ] After taking the logarithm of both sides : 

K - 1 ( 3 ) 
In ( P ( no , ni , nk - 1 | r0 , P1 , ... , VK - 1 ) ) = - -ri + n ; ln ( ri ) - In ( n ; ! ) 

i = 0 

[ 0125 ] Dropping the constant term In ( n ;! ) , which does not 
change with r ; we define : 

event , the number of candidate positions ( A in MDRFs 
corresponding to the number of entries of the k - d tree . 
Therefore , a k - d tree can be constructed with the MDRFs 
naturally . 
[ 0132 ] In order to account for the energy variations 
induced by scintillator's intrinsic energy resolution , such as 
Poisson statistics and electric noise , each event could be 
normalized by the summed signal value , before searching 
for its nearest neighbor in the k - d tree . If doing so , the 
MDRFs samples used to construct the k - d tree also need to 
be normalized . 
[ 0133 ] The k - d tree was constructed by continuously sub 
dividing the MDRFs ’ samples in k - dimensional space . The 
dimension to subdivide the MDRF samples was chosen 
randomly for purposes of this disclosure , and the boundary 
of the subdivision was chosen as the medium of the set of 
MDRF - sample values corresponding to that dimension . 

K - 1 ( 4 ) 
Líno , ni , NK - 1 Iro , 71 , ... , ' K - 1 ) = = - r ; + n ; ln ( r ; ) 

i = 0 

[ 0126 ] Therefore , in order to find the nearest neighbor in 
terms of likelihood , we need to find the leaf with the set of 
ro , r19 PK - 1 , that maximize equation ( 4 ) . For each 
dimension ( or light sensor ) i , the corresponding L ; is : 3.1 . Simulation 

L ; ( ni , r ; ) = -r ; + n ; In ( r ; ) ( 5 ) 

K - 1 

and Líno , ni nk - 1 | ro , r1 , ... , PK - 1 ) = Li ( ni , r ; ) = 

i = 0 

2 [ 0127 ] According to equation ( 5 ) , at a node of the k - d tree , 
whose boundary value is b ; if we choose the branch that 
satisfies the partition criteria ( if n > b? , we search among r ; 
that satisfy rz > b ;; if n : < b ;, we search among r ; that satisfy 
ri < b ; ) , it is easy to show that the highest possible L? is 
achieved when r ; = n ;: 

Limax = -n ; + n ; In ( n ; ) ( 6 ) 

[ 0128 ] If we choose the branch that violates the partition 
criteria , the highest L¡ possible is achieved when r ; = b ;: 

Limax = -b + n ; In ( b ; ) ( 7 ) 

[ 0129 ] In this case , if we already have a candidate result , 
whose L is L current , the pruning can happen when a search 
has violated the partition criteria at a number of dimensions , 
such that their corresponding Limax are limited by equation 
( 7 ) . For the remaining dimensions , even if their correspond 
ing Limax have achieved the highest values indicated by 
equation ( 6 ) , the total L is still smaller than L current , so there 
is no need to continue to search the branch ( pruned ) . 
( 0130 ] This part shows the possibility of combining other 
metrics , such as maximum likelihood , into the k - d tree 
search method , which expands the flexibility of the algo 
rithm . 

[ 0134 ] To illustrate the utility of a k - d tree search in the 
determination of gamma - ray , interaction location , a simula 
tion was carried out based on the edge - readout detector 
design ( Li et al . , Medical physics , 2018 , 45 ( 6 ) : 2425-2438 ) . 
The size of the LYSO scintillator was chosen to be 50 : 8 
mmx50 : 8 mmx3 mm , 20 SiPMs were modeled , each SiPM 
size was 10:16 mmx3 mm , with an active area of 10 mmx3 
mm . The photon detection efficiency ( PDE ) was conserva 
tively set to be 20 % and the dark count rate was modeled as 
1.0 MHz / mm2 . An excess noise factor of 1.21 was included . 
Refractive index of the optical gel and the SiPM window 
material were set to be 1 : 5 . Optical barriers were included in 
the crystal in accordance with Li et al . , Medical physics , 
2018 , 45 ( 6 ) : 2425-2438 . 
[ 0135 ] A perfectly thin gamma - ray beam of 511 keV 
photons was used to calibrate the detector at 252x252 
positions , with step sizes in x and y directions of 0.25 mm . 
1000 photoelectric interactions were modeled each scanned 
position . The resulting MDRFs were determined by calcu 
lating the mean signal responses of each light sensor at each 
scanned location , as shown in FIG . 6 . 
[ 0136 ] Projections created by illumination of 511 keV 
photons through a collimating mask with 7 parallel slits ( 7 
fan beams of gamma rays ) were also simulated . The spacing 
between the beams was 7.5 mm and the width of each 
gamma - ray fan beam was 0.44 mm FWHM . The estimated 
projection image of these seven fan beams on the detector is 
shown in FIG . 7 , with a total of 9.3x10 % photoelectric 
interaction events estimated using an exhaustive search 
method , and where variance is larger near detector edges 
partially due to undesirable total internal reflection ( TIR ) on 
detector edges ( Li et al . , Medical physics , 2018 , 45 ( 6 ) : 
2425-2438 ) . This result serves as the ground truth . The 
simulation and searching programs were written in C ++ . 

a 

' 

9 

Example 3. Using k - d Tree to Estimate Event 
Position 

[ 0131 ] Mean detector response functions ( MDRFs ) are the 
mean signal responses of the light sensors of a scintillator 
detector , as functions of the gamma- , X- , neutron , or proton 
ray , or other high energy particle , interaction positions , and 
they can be treated as maps of signal responses ( of the light 
sensors ) . The position of an unknown event is found by 
finding among the many MDRF samples the position ( e.g. , 
the champion ” ) that has the smallest distance with respect 
to the query event ( nearest neighbor ) . The number of total 
light sensors ( M ) is equal to the dimensionality of each 

3.1.1 . Contracting - Grid Search Method 
[ 0137 ] The total time of using the exhaustive search to 
estimate the interaction positions of the 9.3x10 $ photoelec 
tric interactions was 4292 s , with an Intel i7-4770k CPU , 
single thread , without over clocking . Using the contracting 
grid ( CG ) search method with a 4x4 grid with initial length 
of 16 mm and a contracting ratio of 0.75 , the total time cost 
is greatly reduced to 26 s , and the resulting estimated 
projection image for 7 fan beams is shown in FIG . 8 . 
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[ 0143 ] To test the positioning algorithm , six slit beams of 
width 0.625 mmFWHM at six different positions were 
projected onto the detector , 50000 gamma - ray interactions 
of 662 keV photons were recorded at each slit location . FIG . 
12 shows the estimated projection images of the 6 slit beams 
using exhaustive search method , which are recorded , and 
considered , as the ground truth . It took 162 s to finish 
searching the 3x10 events . 
[ 0144 ] In the following part , a comparison was made 
between contracting - grid ( CG ) search method and k - d tree 
search method . 

[ 0138 ] By comparing FIG . 8 with FIG . 7 , it is obvious that 
the contracting grid ( CG ) search method cannot provide 
enough precision with these complicated MDRF function . 
Positioning errors are obvious in the image of FIG . 8 as the 
beam in the center is disconnected , and some events are 
misplaced in some wrong places . Compared with the ground 
truth , the standard deviation is 1.9 mm . The reason why the 
contracting grid search method does not work well is due to 
the introduction of optical barriers , which make the MDRFs 
much more complicated shapes , and there are many local 
optimal positions ( local likelihood maxima ) . The searching 
grid can be easily trapped into local - optimal positions and 
will thus at least occasionally fail to reach the global - optimal 
position ( global likelihood maxima ) . A likelihood map of 
three random interaction events is shown in FIG . 9 . 
[ 0139 ] To search for a global likelihood maxima is 
extremely challenging due to the appearance of many local 
likelihood maxima . From the likelihood map of FIG . 9 , 
many local likelihood maxima can be observed . These local 
likelihood maxima have chance to trap the search grid into 
the regions close to those local likelihood maxima and the 
search grid will never reach the position of global likelihood 
maxima . 

3.2.1 . Contracting - Grid Search 
[ 0145 ] The six slit images achieved using the contracting 
grid search method ( 4x4 grid with initial length of 7 mm and 
a contracting ratio of 0.75 ) is shown in FIG . 13. The total 
search time is 4.50 s to estimate 3x10 % events . If using the 
result of exhaustive search as ground truth , CG search has a 
standard deviation of 1.3 mm due to occasional large error 
by some events . 

3.2.2 . k - d Tree Search Method 

3.1.2 . k - d Tree Search Method 

a 

[ 0140 ] The k - d tree was constructed with the MDRFs 
achieved from t calibration simulation procedure described 
above in 3.1 . In this case , each entry in the k - d tree has 20 
dimensions ( k is 20 in this example , since there were 20 light 
sensors ) , and there are a total of 252x252 MDRF samples 
( corresponding to 63,504 leaves of the tree ) . The interaction 
positions of the 7 simulated fan beams were estimated using 
the k - d tree search method introduced in the previous 
section . The resulting projection image is shown in FIG . 10 . 
[ 014 ] Using the k - d tree search method , the total time 
used to search these 9.3x105 events is 14 s , which is faster 
than the contracting - grid search method . By comparing FIG . 
7 and FIG . 10 , the precision of k - d tree search method is 
comparable to that of the exhaustive search method . This is 
not unexpected since the k - d tree search is actually another 
kind of exhaustive search , but with branch pruning to 
increase the searching speed . 

[ 0146 ] The k - d tree was constructed with the MDRFs 
achieved from the experiment calibration dataset . In this 
case , each entry in the k - d tree has 16 dimensions ( since 
there are 16 SiPMs ) , and there are a total of 81x81 MDRF 
samples ( corresponding to 6,561 leaves of the tree ) . The 
same six slit images ( same data ) of FIG . 13 estimated using 
the k - d tree search method are shown in FIG . 14. The total 
search time is 1.8 s to estimate 3x10 events . Again , if using 
the result of exhaustive search as ground truth , k - d tree 
search has a standard deviation of 0.0 mm , which indicates 
an exact same result is achieved compared with exhaustive 
search method . This is not unexpected since the k - d tree is 
actually another kind of exhaustive search , but with branch 
pruning to increase the searching speed . 
[ 0147 ] Note that each event from these experiments must 
be normalized before searching for its nearest neighbor in 
the k - d tree , since the MDRFs used to construct the k - d tree 
are normalized , the normalization is to keep them consistent 
with each other . The experimental results agree well with the 
simulation regarding precision and spent time for both 
methods . And by comparing with FIG . 12 ( ground truth ) , 
these experiments indicates that the k - d tree search method 
has the highest precision with reduced searching time . 

3.2 . Experiment Result 

[ 0142 ] The prototype detector in Li et al . ( Medical phys 
ics , 2018 , 45 ( 6 ) : 2425-2438 ) was used for the experiment 
measurements , the scintillation crystal is a piece of Csl ( T1 ) 
of size 27.4 mmx27.4 mmx3 mm , 16 Hamamatsu S13360 
6050PE SIPMs ( active area is 6 mmx6 mm ) were attached 
to the scintillator crystal to read from edges ( 4 SiPM sensors 
on each edge ) . Sixteen mechanically drilled holes were 
introduced as optical barriers . The detector was calibrated 
using a well collimated gamma - ray beam of 662 keV , the 
size of the calibration beam was 0.44 mmx0.44 mm FWHM , 
which was used to scan 81x81 locations with a step size of 
0.25 mm . The corresponding MDRFs are calculated using 
the calibration data , and are shown in FIG . 11. A k - d tree is 
constructed with this set of MDRFs , the k - d tree is con 
structed by continuously splitting the MDRFs ' entries in 
k - dimensional space ( k = 16 in this experiment ) . In the pro 
cess of constructing the k - d tree , the dimension which has 
largest gap across the split value region is always chosen , 
aiming to minimize the error chance of initial search . 

Example 4. Discussion and Conclusion 
[ 0148 ] Both the simulation and experimental results show 
the fact that the k - d tree search method can provide the 
highest search precision ( same , or comparable , with an 
exhaustive search ) with improved search speed as compared 
to CG search methods . Compared with contracting - grid 
search method , the k - d tree search method is more robust 
when searching in MDRFs with complicated merit function 
map ( such as likelihood map ) , as the search precision is 
equivalent to exhaustive search . 
[ 0149 ] The k - d tree search method actually belongs to the 
look - up table category . But compared with other look - up 
table methods , k - d tree searching has the highest accuracy 
( as good as exhaustive search ) . The algorithm is also rela 
tively simple to implement , and almost fits well with any 
situation ( for example , complicated MDRFs can be 
searched ) . 
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-continued 
Exhaustive 

search 
CG 

search 
k - d tree 
search 

Experiment N / A 1.3 mm 0.0 mm Standard deviation 
from ground truth 
Search time for 
3.0 x 105 events 

162 s 4.5 s 1.8 s 

[ 0150 ] The time complexity of k - d tree search is O ( log2 
( N ) ) , where N is the total number of entries ( leaves ) in the 
MDRFs or k - d tree ( number of leaves in k - d tree is equal to 
number of entries of MDRFs ) , compared with time com 
plexity O ( N ) of exhaustive search method , the search speed 
is greatly increased . Comparison of the search speed of both 
k - d tree and contracting - grid search method is difficult , as 
there are many parameters to adjust for contracting grid 
search method ( such as number of trial positions in a grid , 
grid length , contracting ratio ... ) , but the k - d tree has 
reduced search speed in the examples in this work . The 
space complexity of k - d tree search is a little bit more than 
a contracting - grid search method , since both the nodes and 
leaves of k - d tree should be stored . But due to the fact that 
the node has only two attributes ( index and value ) , while the 
leaves have k attributes , the increase of memory usage is not 

a 

that great . 
[ 0151 ] Since the k - d tree search method actually has 
exactly the same accuracy as exhaustive search method , the 
nearest neighbor of a query event is guaranteed to be found 
in decently short time ( average search time is O ( log 2 ( N ) ) ) , 
where N is the number of entries in the reference dataset . 
The algorithm is also relatively simple to implement , and is 
robust to adapt to different situations ( such as searching a 
detector with complicated MDRFs or using a different merit 
function to search ) . Moreover , this concept can be further 
extended into applications in other fields , such as locating 
interaction events in high - energy physics experiments ( al 
pha and beta particles , energetic nucleus fragment or even 
neutrons ) , whenever a critical requirement on achieving 
both “ accuracy and speed at the same time ” is needed . 
[ 0152 ] Still , similar to many other reference - data - based 
search methods , the apparent weakness of k - d tree search is 
the need of acquiring calibration data to construct the k - d 
tree , which could be very time - consuming . And the con 
struction of k - d tree requires little bit more memory to store 
the nodes of the k - d tree ( since the nodes requires less 
memory than leaves , the increase of memory use is small ) , 
while the leaves store the whole reference dataset . In addi 
tion , due to the many branches in the code of k - d tree search 
( many “ if ” and “ else ” statements , which create branches in 
the code ) , applying it on GPU is more challenging . In 
addition , the possible need to transport raw data ( all readings 
of the light sensors of each event instead of its interaction 
position and energy ) from detector modules to local com 
puters will pose more harsh technical challenges on the 
communication bandwidth and data storage capacity . 
Despite these challenges , the high accuracy and fast search 
ing capability of k - d tree search method facilitate its broad 
applications in SPECT / PET and high energy physics detec 
tors , where fast and reliable localization of interaction events 
is required . 
[ 0153 ] A comparison between the exhaustive search , con 
tracting - grid search and k - d tree search in terms of accuracy 
and efficiency for the examples in the disclosure is summa 
rized in the table below : 

[ 0154 ] FIG . 15 shows a schematic diagram of a system 10 
for estimating a position 15 of an interaction event , which 
generates scintillation photons 20 , within a detector 25 in an 
embodiment of the invention . FIG . 16 shows a flow chart of 
a method 100 for estimating the position 15 of the interac 
tion event within the detector 25 using signals 35 induced 
within the detector 25 induced by the scintillation photons 
20 on one or more light sensors 30 in an embodiment of the 
invention . 
[ 0155 ] System 10 includes k light sensors 30 ( e.g. , 30 ( 1 ) , 
30 ( 2 ) , ... , 30 ( k - 1 ) , and 30 ( k ) ) coupled in communication 
with one or more processors 40. System 10 includes one or 
more memory devices 45 coupled in communication with 
the processor ( s ) 40. In some embodiments , memory device 
( s ) 45 include a non - transitory computer - readable medium 
80 storing processor - executable program instructions as 
software 85. In embodiments in which one or more steps of 
method 100 are performed and / or implemented , at least in 
part , using software 85 , processor ( s ) 40 executing the pro 
gram instructions cause the processor ( s ) 40 to perform , 
implement , and / or otherwise facilitate one or more of the 
method 100 steps as disclosed herein . In the example shown , 
system 10 includes one or more input and / or output ( I / O ) 
device ( s ) 75 coupled in communication with processor ( s ) 
40. Non - limiting examples of I / O devices 75 include dis 
plays , keyboards , mice , wired and / or wireless transceivers , 
and touchpads . 
[ 0156 ] Method 100 includes receiving 102 , from the k 
light sensor ( s ) 30 and by the processor ( s ) 40 , a dataset 50 
including o records 55 having values corresponding to the 
signals 35 induced the scintillation photons 20. Method 
100 includes assigning 104 , by the processor ( s ) 40 , a par 
tition criteria to a k - dimensional ( k - d ) tree data structure 60 
including n nodes 65 distributed over a plurality of levels 
( Lm ) . The n nodes 65 include : a root node assigned to first 
level ( L1 ) of the plurality of levels , and a plurality of 
intermediate nodes assigned to at least a second ( L2 ) and a 
third ( L3 ) level of the plurality of m levels ( e.g. , L2 , ... Lm - 1 , 
Lm ) . The k - d tree data structure 60 includes a plurality of 
leafs 90 distributed in the k - d tree data structure 60 after a 
final level ( Lm ) of the plurality of levels . The root node , the 
plurality of intermediate nodes , and the plurality of leafs 90 
are linked by branches . Method 100 includes storing 106 , by 
the processor ( s ) 40 and in the memory device ( s ) 45 , the o 
records 55 of the received 102 dataset 50 in the n nodes 65 
of the k - d data structure 60. As used above , k is the number 
of light sensors , o is the number of records , m is the number 
of levels , and n is the number of nodes 
[ 0157 ] Method 100 includes querying 108 , by the proces 
sor ( s ) 40 , the k - d tree data structure 60 for the position 15 
of the interaction event . The querying 108 step includes : ( a ) 
calculating 110 a compound value from a query vector 95 
( e.g. , input using I / O device 75 ) ; ( b ) determining 112 , by the 
processor ( s ) 40 , a root node - to - second level intermediate 
node branch of the k - d tree data structure 60 to search based 

- 1 ' 

2 

Exhaustive 
search 

CG 
search 

k - d tree 
search 

Simulation N / A 1.9 mm 0.0 mm Standard deviation 
from ground truth 
Search time for 
9.3 x 105 events 

4292 s 26 s 14 s 
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on a searching strategy ; and ( c ) searching 114 , by the 
processor ( s ) 40 , the determined 112 root node - to - second 
level intermediate node branch of the k - d tree data structure 
60. For the intermediate nodes of at least the third level of 
the k - d data structure 60 , method 100 includes iterating 116 , 
by the processor ( s ) 40 , through the above - described calcu 
lating 110 , determining 112 , and searching 114 steps . 
[ 0158 ] Method 100 includes storing 118 , by the processor 
( s ) 40 and in the memory device ( s ) 45 , one or more resultant 
values 70 of the querying 108 step in at least one of the 
plurality of leafs 90. Method 100 includes returning 120 , by 
the processor ( s ) 40 , the resultant value ( s ) 70 stored 118 in 
the leaf ( s ) 90 as a result for the position 15 of the interaction 
event . In the example of FIG . 15 , the one or more resultant 
values 70 are returned 120 by processor ( s ) 40 for viewing on 
a display device of the I / O device ( s ) 75 by a user 99 of 
system 10 . 

STATEMENTS REGARDING INCORPORATION 
BY REFERENCE AND VARIATIONS 

[ 0159 ] All references throughout this application , for 
example patent documents including issued or granted pat 
ents or equivalents ; patent application publications ; and 
non - patent literature documents or other source material ; are 
hereby incorporated by reference herein in their entireties , as 
though individually incorporated by reference , to the extent 
each reference is at least partially not inconsistent with the 
disclosure in this application ( for example , a reference that 
is partially inconsistent is incorporated by reference except 
for the partially inconsistent portion of the reference ) . 
[ 0160 ] The terms and expressions which have been 
employed herein are used as terms of description and not of 
limitation , and there is no intention in the use of such terms 
and expressions of excluding any equivalents of the features 
shown and described or portions thereof , but it is recognized 
that various modifications are possible within the scope of 
the invention claimed . Thus , it should be understood that 
although the present invention has been specifically dis 
closed by preferred embodiments , exemplary embodiments 
and optional features , modif on and vai of the 
concepts herein disclosed may be resorted to by those skilled 
in the art , and that such modifications and variations are 
considered to be within the scope of this invention as defined 
by the appended claims . The specific embodiments provided 
herein are examples of useful embodiments of the present 
invention and it will be apparent to one skilled in the art that 
the present invention may be carried out using a large 
number of variations of the devices , device components , 
methods steps set forth in the present description . As will be 
obvious to one of skill in the art , methods and devices useful 
for the present methods can include a large number of 
optional composition and processing elements and steps . 
[ 0161 ] When a group of substituents is disclosed herein , it 
is understood that all individual members of that group and 
all subgroups , are disclosed separately . When a Markush 
group or other grouping is used herein , all individual mem 
bers of the group and all combinations and subcombinations 
possible of the group are intended to be individually 
included in the disclosure . Every formulation or combina 
tion of components described or exemplified herein can be 
used to practice the invention , unless otherwise stated . 
Whenever a range is given in the specification , for example , 
a size range , a number range , a pore size range , a porosity 
range , a thickness range , LOD range , a temperature range , a 

time range , a flow - rate range , or a composition or concen 
tration range , all intermediate ranges and subranges , as well 
as all individual values included in the ranges given are 
intended to be included in the disclosure . It will be under 
stood that any subranges or individual values in a range or 
subrange that are included in the description herein can be 
excluded from the claims herein . 
[ 0162 ] All patents and publications mentioned in the 
specification are indicative of the levels of skill of those 
skilled in the art to which the invention pertains . References 
cited herein are incorporated by reference herein in their 
entirety to indicate the state of the art as of their publication 
or filing date and it is intended that this information can be 
employed herein , if needed , to exclude specific embodi 
ments that are in the prior art . For example , when compo 
sition of matter are claimed , it should be understood that 
compounds known and available in the art prior to Appli 
cants invention , including compounds for which an enabling 
disclosure is provided in the references cited herein , are not 
intended to be included in the composition of matter claims 
herein . 
[ 0163 ] As used herein , “ comprising ” is synonymous with 
" including , " " containing , " or " characterized by , ” and is 
inclusive or open - ended and does not exclude additional , 
unrecited elements or method steps . As used herein , “ con 
sisting of excludes any element , step , or ingredient not 
specified in the claim element . As used herein , “ consisting 
essentially of ” does not exclude materials or steps that do not 
materially affect the basic and novel characteristics of the 
claim . In each instance herein any of the terms “ compris 
ing ” , “ consisting essentially of ” and “ consisting of may be 
replaced with either of the other two terms . The invention 
illustratively described herein suitably may be practiced in 
the absence of any element or elements , limitation or limi 
tations which is not specifically disclosed herein . 
[ 0164 ] One of ordinary skill in the art will appreciate that 
starting materials , biological materials , reagents , synthetic 
methods , purification methods , analytical methods , assay 
methods , and biological methods other than those specifi 
cally exemplified can be employed in the practice of the 
invention without resort to undue experimentation . All art 
known functional equivalents , of any such materials and 
methods are intended to be included in this invention . The 
terms and expressions which have been employed are used 
as terms of description and not of limitation , and there is no 
intention that in the use of such terms and expressions of 
excluding any equivalents of the features shown and 
described or portions thereof , but it is recognized that 
various modifications are possible within the scope of the 
invention claimed . Thus , it should be understood that 
although the present invention has been specifically dis 
closed by preferred embodiments and optional features , 
modification and variation of the concepts herein disclosed 
may be resorted to by those skilled in the art , and that such 
modifications and variations are considered to be within the 
scope of this invention as defined by the appended claims . 
We claim : 
1. A method for estimating a position of an interaction 

event generating scintillation photons within a detector 
using signals induced by the scintillation photons on k light 
sensors , where k is the number of light sensors , the method 
comprising : 

receiving , from the k light sensors and by a processor 
communicatively coupled to the k light sensors , a 
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dataset comprising o records having values correspond 
ing to the signals induced by the scintillation photons , 
where o is the number of records ; 

assigning , by the processor , a partition criteria to a k - di 
mensional ( k - d ) tree data structure including n nodes 
distributed over a plurality of levels , where n is the 
number of nodes , wherein the n nodes , include : a root 
node assigned to a first level of the plurality of levels , 
and a plurality of intermediate nodes assigned to at 
least a second and a third level of the plurality of levels , 
wherein the k - d tree data structure further includes a 
plurality of leafs distributed in the k - d tree data struc 
ture after a final level of the plurality of levels , and 
wherein the root node , the plurality of intermediate 
nodes , and the plurality of leafs are linked by branches ; 

storing , by the processor and in a memory device com 
municatively coupled to the processor , the o records of 
the received dataset in the n nodes of the k - d tree data 
structure ; 

querying , by the processor , the k - d tree data structure for 
the position of the interaction event , wherein the que 
rying step comprises : ( a ) calculating a compound value 
from a query vector ; ( b ) determining , by the processor , 
a root node - to - second level intermediate node branch 
of the k - d tree data structure to search based on a 
searching strategy ; ( c ) searching , by the processor , the 
root node - to - second level intermediate node branch of 
the k - d tree data structure selected by the searching 
strategy ; 

for intermediate nodes of at least the third level of the k - d 
data structure , iterating , by the processor , through steps 
( a ) , ( b ) , and ( c ) ; 

storing , by the processor and in the memory device , one 
or more resultant values of the querying step in one of 
the plurality of leafs ; and 

returning , by the processor , the one or more resultant 
values stored in the one of the plurality of leafs as a 
result for the position of the interaction event . 

2. The method of claim 1 , wherein the received dataset 
includes an array of values corresponding to the signals 
induced by the scintillation photons , and wherein the 
method further comprises constructing , by the processor , the 
k - d tree data structure from the array of values as a one 
dimensional tree . 

3. The method of claim 1 , wherein the received dataset 
includes a plurality of vectors , each of the plurality of 
vectors including two or more values corresponding to the 
signals induced by the scintillation photons , and wherein the 
method further comprises constructing , by the processor , the 
k - d tree data structure from the plurality of vectors as a k - d 
tree having at least two - dimensions . 

4. The method of any one of the preceding claims , further 
comprising constructing , by the processor , the k - d tree data 
structure as a binary search tree structure . 

5. The method of any one of the preceding claims , further 
comprising : 

determining , by the processor and based on the received 
dataset , mean detector response functions ( MDRFs ) , 
the MDRFs defined as the mean signal responses of the 
k light sensors as functions of known interaction event 
positions ; and 

constructing , by the processor , the k - d tree data structure 
from the MDRFs . 

6. The method of any one of the preceding claims , 
wherein the assigning step includes applying , by the pro 
cessor , a rule for each of the n nodes , and wherein the 
querying step includes : 

comparing , by the processor , the compound value calcu 
lated from the query vector for the querying step with 
one or more boundary values stored in the root node ; 
and 

selecting , by the processor and based on a result of the 
comparing step and the applied rule , one of a plurality 
of root node - to - second level intermediate node 
branches to search for the searching step , 

wherein the iterating step includes applying , by the pro 
cessor , the same rule for the intermediate nodes of the 
at least the third level of the k - d data structure . 

7. The method of any one of the preceding claims , 
wherein the one or more boundary values include at least 
two boundary values , and wherein comparing the compound 
value calculated from the query vector for the querying step 
with one or more boundary values stored in the root node 
comprises determining that the compound value falls in an 
interval bounded by the at least two boundary values , or the 
compound value is less than the at least two boundary 
values , or the compound value is greater than the at least two 
boundary values . 

8. The method of any one of the preceding claims , 
wherein selecting the one of a plurality of root node - to 
second level intermediate node branches to search for the 
searching step comprises determining the one of a plurality 
of root node - to - second level intermediate node branches that 
satisfies the searching strategy . 

9. The method of any one of the preceding claims , further 
comprising computing , by the processor : a distance , or a 
merit , between the one of the plurality of leafs storing the 
one or more resultant values of the querying step and the 
query for the querying step . 

10. The method of any one of the preceding claims , 
wherein the interaction event is a gamma - ray , X - ray , neu 
tron , proton , or other high energy particle interaction within 
the detector . 

11. The method of any one of the preceding claims , 
wherein the interaction event is a gamma - ray interaction . 

12. The method of any one of the preceding claims , 
wherein the receiving step includes receiving , by the pro 
cessor , the dataset from k light sensors of a single - photon 
emission computed tomography ( SPECT ) scanner . 

13. The method of any one of the preceding claims , 
wherein the receiving step includes receiving , by the pro 
cessor , the dataset from k light sensors of a positron emis 
sion tomography ( PET ) scanner . 

14. The method of any one of the preceding claims , 
wherein the compound value is a likelihood value or like 
lihood reduction value . 

15. A system for estimating a position of an interaction 
event generating scintillation photons within a detector , the system comprising : 

light sensors for generating signals induced by scintilla 
tion photons incident thereupon ; 

a memory device ; 
a processor communicatively coupled to the light sensors 

and to the memory device , wherein the processor is 
programmed to : 
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receive , from the light sensors , a dataset including 
values corresponding to the signals induced by the 
scintillation photons ; 

assign a partition criteria to a k - d tree data structure 
having nodes and leafs , wherein the nodes include a 
root node , intermediate nodes , and penultimate 
nodes , wherein the root node , the intermediate 
nodes , the penultimate nodes , and the leafs are linked 
by branches ; 

store , in the memory , the received dataset to the k - d tree 
data structure ; 

querying , by the processor , the k - d tree for the position 
of the interaction event position , wherein the query 
ing step comprises : ( a ) calculate a compound value 
from a query vector ; ( b ) determine a branch of the 
k - d tree to search based on a searching strategy ; ( c ) 
search the branch of the k - d tree selected by the 
searching strategy ; 

for the intermediate nodes and the penultimate nodes , 
iterate through processor operations ( a ) , ( b ) , and ( c ) ; 
and 

return the value stored in the leaf as a query result for 
the position of the interaction event position . 

16. The system of claim 15 , wherein the received dataset 
includes an array of values corresponding to the signals 
induced by the scintillation photons , and wherein the pro 
cessor is further programmed to construct the k - d tree data 
structure from the array of values as a one - dimensional k - d 
tree . 

17. The system of claim 15 , wherein the received dataset 
includes a plurality of vectors , each of the plurality of 
vectors including two or more values corresponding to the 
signals induced by the scintillation photons , and wherein the 
processor is further programmed to construct the k - d tree 
data structure from the plurality of vectors as a k - d tree 
having at least two - dimensions . 

18. The system of any one of claims 15-17 , wherein the 
processor is further programmed to construct the k - d tree 
data structure as a binary search tree structure . 

19. The system of any one of claims 15-18 , wherein the 
processor is further programmed to : 

determine , based on the received dataset , mean detector 
response functions ( MDRFs ) , the MDRFs defined as 
the mean signal responses of the light sensors as 
functions of known interaction positions , and 

construct the k - d tree data structure from the MDRFs . 
20. The system of any one of claims 15-19 , wherein , for 

the assigning processor operation , the processor is further 
programmed to apply a rule for each of the nodes , and 
wherein , for the querying processor operation , the processor 
is further programmed to : 

compare a value calculated from the query with one or 
more values stored in the root node ; and 

select , based on a result of the comparing processor 
operation and the applied rule , one of two or more 
branches to search for the searching processor opera 
tion , 

wherein , for the iterating processor operation , the proces 
sor is further programmed to apply the same rule for the 
intermediate nodes and the penultimate nodes . 

21. The system of any one of claims 15-20 , wherein the 
processor is further programmed to compute a distance ( or 
merit ) between the leaf storing the value of the query result 
and the query for the querying processor operation . 

22. The system of any one of claims 15-21 , wherein the 
interaction event is a gamma - ray , X - ray , neutron , proton , or 
other high energy particle interaction within the detector . 

23. The system of any one of claims 15-22 , wherein the 
interaction event is a gamma - interaction . 

24. The system of any one of claims 15-23 , further 
comprising a medical imaging system including the light 
sensors , wherein , for the receiving processor operation , the 
processor is further programmed to receive the dataset from 
light sensors of medical imaging system . 

25. The system of claim 24 , wherein the medical imaging 
system is a single - photon emission computed tomography 
( SPECT ) scanner including the light sensors , and wherein , 
for the receiving processor operation , the processor is further 
programmed to receive the dataset from light sensors of 
SPECT scanner . 

26. The system of claim 24 , wherein the medical imaging 
system is a positron emission tomography ( PET ) scanner 
including the light sensors , wherein , for the receiving pro 
cessor operation , the processor is further programmed to 
receive the dataset from light sensors of PET scanner . 

27. The system of any one of claims 15-26 , wherein the 
compound value is a likelihood value or likelihood reduction 
value . 

28. A non - transient computer readable medium compris 
ing processor - executable instructions stored therein for esti 
mating a position of an interaction event generating scintil 
lation photons within a detector , which , when executed by 
one or more processors communicatively coupled to : one or 
more memory devi es , and light sensors for generating 
signals induced by scintillation photons incident thereupon , 
cause the one or more processors to : 

receive , from the light sensors , a dataset including values 
corresponding to the signals induced by the scintilla 
tion photons ; 

assign a partition criteria to a k - d tree data structure 
having nodes and leafs , wherein the nodes include a 
root node , intermediate nodes , and penultimate nodes , 
wherein the root node , the intermediate nodes , the 
penultimate nodes , and the leafs are linked by 
branches ; 

store , in the memory , the received dataset to the k - d tree 
data structure ; 

query the k - d tree for the position of the interaction event 
position , wherein , for querying the k - d tree , the pro 
cessor - executable program instructs the one or more 
processors to : ( a ) calculate a compound value from a 
query vector ; ( b ) determine a branch of the k - d tree to 
search based on a searching strategy ; ( c ) search the 
branch of the k - d tree selected by the searching strat 
egy ; 

for the intermediate nodes and the penultimate nodes , 
iterate through the processor operations ( a ) , ( b ) , and 
( c ) ; and 

return the value stored in the leaf as a query result for the 
position of the interaction event position . 

29. The non - transient computer readable medium of claim 
28 , wherein the compound value is a likelihood value or 
likelihood reduction value . 

30. The non - transient computer readable medium of 
claims 28-29 , wherein the interaction event is a gamma - ray , 
X - ray , neutron , proton , or other high energy particle inter 
action within the detector . 
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31. The non - transient computer readable medium of 
claims 28-30 , wherein the interaction event is a gamma - ray 
interaction . 

* 


